强化学习仿真环境Mujoco以及python bindings

本文介绍了在深度学习背景下,如何使用被DeepMind收购并开源的DMControl库进行强化学习中的Mujoco仿真,包括引入模型、渲染和模拟关节轴的可视化过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

jinxing众所周知,mujoco是强化学习领域很常用的仿真引擎。

众所周知,在实现强化学习的算法的时候我们需要用到其pytho接口。

众所周知,mujoco原来是openai的,提供的接口是mujoco-py,但很多年不维护了。

众所周知,mujoco被deepmind收购并开源了,现在接口是dm_control,更新很勤。

所以今天主要讲解一下dm_control的用法。

其官网文档链接为:https://colab.research.google.com/github/deepmind/dm_control/blob/main/tutorial.ipynb#scrollTo=T5f4w3Kq2X14首先,引入模型文件。

from dm_control import mujoco
import PIL.Image
swinging_body = """
<m
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值