实对称矩阵一定可以相似对角化

对于任意的 n n n阶实对称矩阵 A A A,存在正交矩阵 Q Q Q,使得
Q − 1 A Q = Q T A Q = d i a g ( λ 1 , … , λ n ) Q^{-1}AQ=Q^T AQ=diag(\lambda_1,\dots,\lambda_n) Q1AQ=QTAQ=diag(λ1,,λn)
其中 λ 1 , … , λ n \lambda_1,\dots,\lambda_n λ1,,λn A A A的特征值

证明:
n = 1 n=1 n=1
I − 1 A I = a 11 I^{-1}AI=a_{11} I1AI=a11
成立
假设当 n = k − 1 n=k-1 n=k1时成立
不妨设 A α 1 = λ 1 α 1 ( ∥ α 1 ∥ 2 = 1 ) A\alpha_1=\lambda_1 \alpha_1(\Vert \alpha_1 \Vert_2=1) Aα1=λ1α1(α12=1)
由施密特正交化,存在 n − 1 n-1 n1个单位向量 α 2 , α 3 , … , α n \alpha_2,\alpha_3,\dots,\alpha_n α2,α3,,αn(其中 α 2 , α 3 , … , α n \alpha_2,\alpha_3,\dots,\alpha_n α2,α3,,αn不一定是特征值)
使得 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,,αn两两正交
Q 1 = ( α 1 , α 2 , … , α n ) Q_1=(\alpha_1,\alpha_2,\dots,\alpha_n) Q1=(α1,α2,,αn)
Q 1 T A Q 1 = ( α 1 T A α 1 α 1 T A α 2 α 1 T A α 3 ⋯ α 1 T A α n α 2 T A α 1 α 2 T A α 2 α 2 T A α 3 ⋯ α 2 T A α n ⋯ ⋯ ⋯ ⋯ ⋯ α n T A α 1 α n T A α 2 α n T A α 3 ⋯ α n T A α n ) = ( λ 1 α 1 T α 1 λ 1 α 1 T α 2 λ 1 α 1 T α 3 ⋯ λ 1 α 1 T α n λ 1 α 2 T α 1 α 2 T A α 2 α 2 T A α 3 ⋯ α 2 T A α n ⋯ ⋯ ⋯ ⋯ ⋯ λ 1 α n T α 1 α n T A α 2 α n T A α 3 ⋯ α n T A α n ) = ( λ 1 0 0 ⋯ 0 0 α 2 T A α 2 α 2 T A α 3 ⋯ α 2 T A α n ⋯ ⋯ ⋯ ⋯ ⋯ 0 α n T A α 2 α n T A α 3 ⋯ α n T A α n ) = ( λ 1 0 0 S ) \begin{aligned} Q_1^TAQ_1&=\begin{pmatrix} \alpha_1^TA\alpha_1&\alpha_1^TA\alpha_2&\alpha_1^TA\alpha_3&\cdots &\alpha_1^TA\alpha_n\\ \alpha_2^TA\alpha_1&\alpha_2^TA\alpha_2&\alpha_2^TA\alpha_3&\cdots &\alpha_2^TA\alpha_n\\ \cdots&\cdots&\cdots&\cdots&\cdots\\ \alpha_n^TA\alpha_1&\alpha_n^TA\alpha_2&\alpha_n^TA\alpha_3&\cdots &\alpha_n^TA\alpha_n\\ \end{pmatrix}\\ &=\begin{pmatrix} \lambda_1\alpha_1^T\alpha_1&\lambda_1\alpha_1^T\alpha_2&\lambda_1\alpha_1^T\alpha_3&\cdots &\lambda_1\alpha_1^T\alpha_n\\ \lambda_1\alpha_2^T\alpha_1&\alpha_2^TA\alpha_2&\alpha_2^TA\alpha_3&\cdots &\alpha_2^TA\alpha_n\\ \cdots&\cdots&\cdots&\cdots&\cdots\\ \lambda_1\alpha_n^T\alpha_1&\alpha_n^TA\alpha_2&\alpha_n^TA\alpha_3&\cdots &\alpha_n^TA\alpha_n\\ \end{pmatrix}\\ &=\begin{pmatrix} \lambda_1&0&0&\cdots &0\\ 0&\alpha_2^TA\alpha_2&\alpha_2^TA\alpha_3&\cdots &\alpha_2^TA\alpha_n\\ \cdots&\cdots&\cdots&\cdots&\cdots\\ 0&\alpha_n^TA\alpha_2&\alpha_n^TA\alpha_3&\cdots &\alpha_n^TA\alpha_n\\ \end{pmatrix}\\ &=\begin{pmatrix} \lambda_1&0\\ 0&S\\ \end{pmatrix} \end{aligned} Q1TAQ1=α1TAα1α2TAα1αnTAα1α1TAα2α2TAα2αnTAα2α1TAα3α2TAα3αnTAα3α1TAαnα2TAαnαnTAαn=λ1α1Tα1λ1α2Tα1λ1αnTα1λ1α1Tα2α2TAα2αnTAα2λ1α1Tα3α2TAα3αnTAα3λ1α1Tαnα2TAαnαnTAαn=λ1000α2TAα2αnTAα20α2TAα3αnTAα30α2TAαnαnTAαn=(λ100S)
S S S是一个 n − 1 n-1 n1阶实对称矩阵
由假设
存在正交矩阵 Q Q Q,使得
Q T S Q = d i a g ( λ 2 , λ 3 , … , λ n ) Q^T SQ=diag(\lambda_2,\lambda_3,\dots,\lambda_n) QTSQ=diag(λ2,λ3,,λn)
Q 2 = ( 1 0 0 Q ) Q_2=\begin{pmatrix} 1&0\\ 0&Q \end{pmatrix} Q2=(100Q)
显然 Q 2 Q_2 Q2 n n n阶正交矩阵
Q 2 T Q 1 T A Q 1 Q 2 = ( Q 1 Q 2 ) T A ( Q 1 Q 2 ) = d i a g ( λ 1 , … , λ n ) Q_2^T Q_1^TAQ_1 Q_2=(Q_1 Q_2)^TA(Q_1 Q_2)=diag(\lambda_1,\dots,\lambda_n) Q2TQ1TAQ1Q2=(Q1Q2)TA(Q1Q2)=diag(λ1,,λn)
显然 Q 1 Q 2 Q_1 Q_2 Q1Q2是正交矩阵
由数学归纳法,结论成立

推论

Q T A Q = d i a g ( λ 1 , … , λ n ) Q^TAQ=diag(\lambda_1,\dots,\lambda_n) QTAQ=diag(λ1,,λn)
A Q = Q d i a g ( λ 1 , … , λ n ) AQ=Qdiag(\lambda_1,\dots,\lambda_n) AQ=Qdiag(λ1,,λn)
( A x 1 , … , A x n ) = ( λ 1 x 1 , … , λ n x n ) (Ax_1,\dots,Ax_n)=(\lambda_1 x_1,\dots,\lambda_n x_n) (Ax1,,Axn)=(λ1x1,,λnxn)
A x i = λ i x i ( i = 1 , 2 , … , n ) Ax_i=\lambda_i x_i(i=1,2,\dots,n) Axi=λixi(i=1,2,,n)
显然 Q Q Q A A A的特征向量经过施密特正交化和单位化后得到的正交矩阵

接着证明这个对角矩阵取遍了所有 A A A的特征值,且 k k k重特征值取了 k k k

等价于证明,实对称矩阵 k k k重特征值恰好有 k k k个线性无关的特征向量

由几何重复度小于等于代数重复度(by 矩阵论)
( A − λ i ) x = 0 (A-\lambda_i)x=0 (Aλi)x=0的基础解系线性无关向量的个数,不会超过 λ i \lambda_i λi的重数
假设 λ i \lambda_i λi的线性无关特征向量小于 k k k,则必然有一个特征值对应的线性无关特征向量多了一个,矛盾

  • 4
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值