《博主简介》
小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
👍感谢小伙伴们点赞、关注!
《------往期经典推荐------》
二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】,持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~
《------正文------》
引言
数据增强是深度学习中提高模型泛化能力的重要手段之一。其核心思想是通过扩展训练数据集的多样性,使模型能够更好地学习数据中的规律,从而避免过度拟合训练数据,并对未见过的数据保持良好的泛化能力。
数据增强作用
提高模型泛化能力
: 通过增加训练数据集的多样性,使模型能够学习到更多数据特征,从而提高对未见过的数据的泛化能力。
减少过拟合
: 过度拟合是指模型在训练数据上表现良好,但在测试数据上表现不佳。数据增强可以减少模型对训练数据的依赖,降低过拟合风险。
降低训练成本
: 数据增强可以通过对现有数据进行变换,而不需要额外采集数据,从而降低训练成本。
提高模型鲁棒性
: 数据增强可以使模型对光照、角度、遮挡等变化更加鲁棒。
图像数据增强技术
图像数据增强技术主要通过对图像进行各种变换来增加训练数据的多样性。常见的图像数据增强技术包括:
旋转、翻转、裁剪
: 改变图像的方向和位置。缩放、变形
: 改变图像的大小和形状。颜色变换
: 改变图像的亮度、对比度、饱和度等。添加噪声
: 在图像中添加随机噪声。混合图像
: 将两张图像混合在一起。
PyTorch实现数据增强
PyTorch 提供了丰富的数据增强工具,我们可以直接使用torchvision中的transforms 模块实现。
以下是一些使用 PyTorch 实现图像数据增强的示例:
import PIL.Image as Image
import torch
from torchvision import transforms
import matplotlib.pyplot as plt
import numpy as np
import warnings
def imshow(img_path, transform):
"""
Function to show data augmentation
Param img_path: path of the image
Param transform: data augmentation technique to apply
"""
img = Image.open(img_path)
fig, ax = plt.subplots(1, 2, figsize=(15, 4))
ax[0].set_title(f'Original image {img.size}')
ax[0].imshow(img)
img = transform(img)
ax[1].set_title(f'Transformed image {img.size}')
ax[1].imshow(img)
改变大小Resize/Rescale
此函数用于将图像的高度和宽度调整为我们想要的特定大小。下面的代码演示了我们想要将图像从其原始大小调整为 224 x 224。
path = './kitten.jpeg'
transform = transforms.Resize((224, 224))
imshow(path, transform)
裁剪Cropping
该技术将要选择的图像的一部分应用于新图像。例如,使用 CenterCrop 来返回一个中心裁剪的图像。
transform = transforms.CenterCrop((224, 224))
imshow(path, transform)
随机裁剪/大小RandomResizedCrop
这种方法同时结合了裁剪和调整大小。
transform = transforms.RandomResizedCrop((100, 300))
imshow(path, transform)
翻转Flipping
水平或垂直翻转图像,下面代码将尝试应用水平翻转到我们的图像
transform = transforms.RandomHorizontalFlip()
imshow(path, transform)
填充Padding
填充包括在图像的所有边缘上按指定的数量填充。我们将每条边填充50像素。
transform = transforms.Pad((50,50,50,50))
imshow(path, transform)
旋转Rotation
对图像随机施加旋转角度。我们将这个角设为15度。
transform = transforms.RandomRotation(15)
imshow(path, transform)
随机仿射变换Random Affine
这种技术是一种保持中心不变的变换。这种技术有一些参数:
-
degrees:旋转角度
-
translate:水平和垂直转换
-
scale:缩放参数
-
share:图片裁剪参数
-
fillcolor:图像外部填充的颜色
transform = transforms.RandomAffine(1, translate=(0.5, 0.5), scale=(1, 1), shear=(1,1), fillcolor=(256,256,256))
imshow(path, transform)
高斯模糊Gaussian Blur
图像将使用高斯模糊进行模糊处理。
transform = transforms.GaussianBlur(7, 3)
imshow(path, transform)
变为灰度Grayscale
将彩色图像转换为灰度。
transform = transforms.Grayscale(num_output_channels=3)
imshow(path, transform)
颜色增强,也称为颜色抖动,是通过改变图像的像素值来修改图像的颜色属性的过程。下面的方法都是颜色相关的操作。
亮度Brightness
改变图像的亮度当与原始图像对比时,生成的图像变暗或变亮。
transform = transforms.ColorJitter(brightness=2)
imshow(path, transform)
对比度Contrast
图像最暗和最亮部分之间的区别程度被称为对比度。图像的对比度也可以作为增强进行调整。
transform = transforms.ColorJitter(contrast=2)
imshow(path, transform)
饱和度Saturation
图片中颜色的分离被定义为饱和度。
transform = transforms.ColorJitter(saturation=20)
imshow(path, transform)
色调Hue
色调被定义为图片中颜色的深浅。
transform = transforms.ColorJitter(hue=2)
imshow(path, transform)
好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!