【2025前沿】COA压缩适应去雾算法模型,效果杠杠的!【附论文与源码】

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发2.【车牌识别与自动收费管理系统开发
3.【手势识别系统开发4.【人脸面部活体检测系统开发
5.【图片风格快速迁移软件开发6.【人脸表表情识别系统
7.【YOLOv8多目标识别与自动标注软件开发8.【基于深度学习的行人跌倒检测系统
9.【基于深度学习的PCB板缺陷检测系统10.【基于深度学习的生活垃圾分类目标检测系统
11.【基于深度学习的安全帽目标检测系统12.【基于深度学习的120种犬类检测与识别系统
13.【基于深度学习的路面坑洞检测系统14.【基于深度学习的火焰烟雾检测系统
15.【基于深度学习的钢材表面缺陷检测系统16.【基于深度学习的舰船目标分类检测系统
17.【基于深度学习的西红柿成熟度检测系统18.【基于深度学习的血细胞检测与计数系统
19.【基于深度学习的吸烟/抽烟行为检测系统20.【基于深度学习的水稻害虫检测与识别系统
21.【基于深度学习的高精度车辆行人检测与计数系统22.【基于深度学习的路面标志线检测与识别系统
23.【基于深度学习的智能小麦害虫检测识别系统24.【基于深度学习的智能玉米害虫检测识别系统
25.【基于深度学习的200种鸟类智能检测与识别系统26.【基于深度学习的45种交通标志智能检测与识别系统
27.【基于深度学习的人脸面部表情识别系统28.【基于深度学习的苹果叶片病害智能诊断系统
29.【基于深度学习的智能肺炎诊断系统30.【基于深度学习的葡萄簇目标检测系统
31.【基于深度学习的100种中草药智能识别系统32.【基于深度学习的102种花卉智能识别系统
33.【基于深度学习的100种蝴蝶智能识别系统34.【基于深度学习的水稻叶片病害智能诊断系统
35.【基于与ByteTrack的车辆行人多目标检测与追踪系统36.【基于深度学习的智能草莓病害检测与分割系统
37.【基于深度学习的复杂场景下船舶目标检测系统38.【基于深度学习的农作物幼苗与杂草检测系统
39.【基于深度学习的智能道路裂缝检测与分析系统40.【基于深度学习的葡萄病害智能诊断与防治系统
41.【基于深度学习的遥感地理空间物体检测系统42.【基于深度学习的无人机视角地面物体检测系统
43.【基于深度学习的木薯病害智能诊断与防治系统44.【基于深度学习的野外火焰烟雾检测系统
45.【基于深度学习的脑肿瘤智能检测系统46.【基于深度学习的玉米叶片病害智能诊断与防治系统
47.【基于深度学习的橙子病害智能诊断与防治系统48.【基于深度学习的车辆检测追踪与流量计数系统
49.【基于深度学习的行人检测追踪与双向流量计数系统50.【基于深度学习的反光衣检测与预警系统
51.【基于深度学习的危险区域人员闯入检测与报警系统52.【基于深度学习的高密度人脸智能检测与统计系统
53.【基于深度学习的CT扫描图像肾结石智能检测系统54.【基于深度学习的水果智能检测系统
55.【基于深度学习的水果质量好坏智能检测系统56.【基于深度学习的蔬菜目标检测与识别系统
57.【基于深度学习的非机动车驾驶员头盔检测系统58.【太基于深度学习的阳能电池板检测与分析系统
59.【基于深度学习的工业螺栓螺母检测60.【基于深度学习的金属焊缝缺陷检测系统
61.【基于深度学习的链条缺陷检测与识别系统62.【基于深度学习的交通信号灯检测识别
63.【基于深度学习的草莓成熟度检测与识别系统64.【基于深度学习的水下海生物检测识别系统
65.【基于深度学习的道路交通事故检测识别系统66.【基于深度学习的安检X光危险品检测与识别系统
67.【基于深度学习的农作物类别检测与识别系统68.【基于深度学习的危险驾驶行为检测识别系统
69.【基于深度学习的维修工具检测识别系统70.【基于深度学习的维修工具检测识别系统
71.【基于深度学习的建筑墙面损伤检测系统72.【基于深度学习的煤矿传送带异物检测系统
73.【基于深度学习的老鼠智能检测系统74.【基于深度学习的水面垃圾智能检测识别系统
75.【基于深度学习的遥感视角船只智能检测系统76.【基于深度学习的胃肠道息肉智能检测分割与诊断系统
77.【基于深度学习的心脏超声图像间隔壁检测分割与分析系统78.【基于深度学习的心脏超声图像间隔壁检测分割与分析系统
79.【基于深度学习的果园苹果检测与计数系统80.【基于深度学习的半导体芯片缺陷检测系统
81.【基于深度学习的糖尿病视网膜病变检测与诊断系统82.【基于深度学习的运动鞋品牌检测与识别系统
83.【基于深度学习的苹果叶片病害检测识别系统84.【基于深度学习的医学X光骨折检测与语音提示系统
85.【基于深度学习的遥感视角农田检测与分割系统86.【基于深度学习的运动品牌LOGO检测与识别系统
87.【基于深度学习的电瓶车进电梯检测与语音提示系统88.【基于深度学习的遥感视角地面房屋建筑检测分割与分析系统
89.【基于深度学习的医学CT图像肺结节智能检测与语音提示系统90.【基于深度学习的舌苔舌象检测识别与诊断系统
91.【基于深度学习的蛀牙智能检测与语音提示系统92.【基于深度学习的皮肤癌智能检测与语音提示系统

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

《------正文------》

效果展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

摘要

  • 核心问题:现有基于学习的去雾算法在合成数据上表现优异,但受计算资源限制和真实场景多样性影响,​真实图像去雾仍面临挑战。
  • 解决方案:提出压缩-适应(CoA)计算流程,通过分治策略:
    1. 压缩阶段:在合成域构建紧凑去雾参数空间以满足效率需求;
    2. 适应阶段:通过双层适应机制聚合合成域知识,提升对未知真实场景的适应性。
  • 优势:无需额外约束的简洁设计,具有跨域稳定性​(平均指标提升14.2%)和模型无关灵活性​(参数量减少≥73%)。

1. 引言

  • 研究背景
    • 去雾技术从早期关注合成数据指标转向真实场景泛化
    • 现有方法面临效率与适应性的矛盾:高效方法缺乏场景适应性,自适应方法计算复杂度高。
  • 相关工作
    • 高效去雾方法:基于图像增强、物理模型或分层处理,但稳定性不足;
    • 自适应去雾方法:基于局部特征、大气散射模型或域适应,计算成本较高。
  • 本文贡献
    1. 首次提出分阶段CoA策略,兼顾效率与适应性;
    2. 设计跨域双层模型,利用合成域知识约束真实域参数学习;
    3. 通过简洁设计实现稳定性和灵活性。

2.创新点

在这里插入图片描述

  1. 分治策略创新
    • 首次将模型压缩(效率优化)与域适应(性能优化)解耦
    • 突破传统方法"效率-适应性"不可兼得的困境
  2. 双层适应机制
    • 上层:CLIP引导的真实域约束
    • 下层:合成域知识锚定优化方向
    • 通过EMA实现渐进式知识迁移
  3. 工程友好设计
    • 无需额外约束条件
    • 支持即插即用(兼容现有去雾模型)
    • 参数量最低仅1.69M(对比D4的10.7M)

3. 实验结果

3.1 实现细节

  • 训练设置:Adam优化器,初始LR=1e-4,余弦退火至1e-6;
  • 评估基准:3合成数据集+3真实数据集;
  • 对比方法:涵盖SGID/C2P/D4等10+种SOTA方法。

3.2 常规场景评估

在这里插入图片描述

定量结果:

  • 在RTTS/URHI/FATTAL上,CoA在多数指标领先;

在这里插入图片描述

定性对比:

  • 相比其他方法,CoA在沙尘/彩色雾霾场景中保持更自然的色彩和纹理。
    在这里插入图片描述

4.适应性验证

  • 夜间去雾:有效处理过曝光和人工光源散射;
    在这里插入图片描述

  • 水下增强:显著提升清晰度,优于DM/SUIR等方法。
    在这里插入图片描述

5. 分析实验

5.1 MoC阶段影响

  • 关键发现:无特征迁移的"朴素学生模型"性能显著下降(图8)。
    在这里插入图片描述

5.2 双层建模必要性

对比实验:

  • 仅下层优化:去雾不彻底;
  • 仅上层优化:出现色彩失真。
    在这里插入图片描述

5.4 参数分析

  • 最优α值:0.95时收敛最快且性能稳定。
    在这里插入图片描述

6. 结论与展望

  • 创新点:首次通过分治策略平衡去雾效率与适应性;
  • 局限性:对遥感雾霾图像处理不足;

参考

论文地址:https://arxiv.org/abs/2504.05590
代码地址:https://github.com/fyxnl/COA


在这里插入图片描述

好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿_旭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值