YOLOv10改进策略【损失函数篇】| WIoU v3:针对低质量样本的边界框回归损失函数

一、背景

  • 现有问题:大多数现有工作假设训练数据中的样本都是高质量的,专注于增强边界框回归损失的拟合能力。然而,在低质量样本盲目增强边界框回归会损害定位性能
  • 解决思路:本文使用Wise-IoU,其动态非单调FM使用异常值程度而非IoU来评估锚框的质量,并提供一种有效的梯度增益分配策略。减少高质量锚框的竞争力,同时降低低质量样本产生的有害梯度,使WIoU能够专注于普通质量的锚框,从而提高检测器的整体性能。

专栏目录:YOLOv10改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

专栏地址:YOLOv10改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值