现控笔记(五)稳定性与Lyapunov方法

稳定性与李雅普诺夫方法

线性系统稳定性:只取决于系统的结构和参数,稳定的条件是特征方程的根都具有负实部(在左半根平面),可用劳斯判据、耐奎斯特判据等方法判断、非线性系统的稳定性:与初始条件和外部扰动的大小有关。

稳定性问题都是相对于某个平衡状态而言的。

李雅普诺夫稳定性定义:
在这里插入图片描述
在这里插入图片描述

2.渐进稳定:
在这里插入图片描述

3.大范围渐进稳定:
在这里插入图片描述

4.不稳定:

在这里插入图片描述

4.2李雅普诺夫第一法:
利用状态方程解的特性来判断系统稳定性的方法,它适用于线性定常、线性时变及可线性化的非线性系统。

状态稳定和内部稳定:
在这里插入图片描述

雅可比矩阵:
在这里插入图片描述

使用李雅普诺夫第一法判断系统在某平衡状态稳定性:
在这里插入图片描述

4.3 李雅普诺夫第二法
预备知识:
(1)标量符号性质
在这里插入图片描述

(2)二次型标量函数
在这里插入图片描述
在这里插入图片描述

(3)希尔维斯特判据
在这里插入图片描述
在这里插入图片描述

李雅普诺夫第二法判定方法:
在这里插入图片描述

稳定判据:
在这里插入图片描述

说明:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sdhdwyx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值