TPAMI 2024 | 卷积神经网络中分段线性激活函数的线性区域数量研究(一)

On the Number of Linear Regions of Convolutional Neural Networks With Piecewise Linear Activations

题目:卷积神经网络中分段线性激活函数的线性区域数量研究

作者:Huan Xiong , Lei Huang, Wenston J.T. Zang , Xiantong Zhen , Guo-Sen Xie , Bin Gu , and Le Song


摘要

深度学习中的一个基本问题是理解深度神经网络(NNs)在实践中表现出色的原因。NNs优越性的一种解释是它们能够实现大量复杂的函数,即它们具有强大的表达能力。具有分段线性激活的神经网络(PLNN)的表达能力可以通过它将输入空间分割成线性区域的最大数量来量化。在本文中,我们提供了几个数学结果,这些结果对于研究具有分段线性激活的卷积神经网络(PLCNNs)的线性区域是必需的,并使用它们推导出单层PLCNNs的最大和平均线性区域数量。此外,我们得到了多层PLCNNs线性区域数量的上下界。我们的结果表明,更深的PLCNNs比浅层PLCN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值