MICCAI‘23 | A2FSeg:用于医学图像分割的自适应多模态融合网络

论文信息

题目:A2FSeg: Adaptive Multi-modal Fusion Network for Medical Image Segmentation
A2FSeg:用于医学图像分割的自适应多模态融合网络
作者:Zirui Wang and Yi Hong
源码链接:https://github.com/Zirui0623/A2FSeg.git

论文创新点

  1. 提出了一个简单的多模态融合网络:作者提出了一个名为A2FSeg的多模态融合网络,该网络通过平均融合和基于注意力的自适应融合两个步骤,能够处理任意数量的图像模态用于不完整的多模态分割。
  2. 处理缺失模态的能力:A2FSeg网络通过简单的平均融合和自适应融合技术,能够有效处理临床诊断中常见的缺失模态问题,从而提高了脑肿瘤分割的性能。
<
内容概要:本文档《x86汇编指令.pdf》是一份简明的x86汇编语言教程,涵盖了从基础到高级的主题。首先介绍了汇编语言及其重要性,接着详细讲解了处理器的基本寄存器、实模式与保护模式下的内存操作、子程序和中断的使用、编译优化技术以及Linux下的x86汇编编程。文档还深入探讨了x86汇编指令集,包括数据传输、算术运算、逻辑运算、串操作、程序转移、伪指令、位操作和处理器控制指令。最后,文档介绍了GCC内联汇编的基础,包括AT&T汇编语法、内联汇编的基本形式和扩展形式、约束条件(constra)的使用以及一些实用的例子。 适合人群:具备一定编程基础,尤其是熟悉结构化程序设计语言的读者,如C/C++程序员,以及对底层编程和计算机架构感兴趣的开发者。 使用场景及目标:①帮助读者深入了解计算机内部运行机制,提高调试能力和程序性能;②掌握x86汇编语言的核心概念和技术,以便在需要高性能代码或硬件交互的场景中应用;③学习如何利用GCC内联汇编技术优化关键代码段,增强程序的执行效率。 其他说明:本文档不仅适合自学,也适用于有一定编程经验的开发者深入研究汇编语言。学习汇编语言不仅能提升对计算机底层的理解,还能为编写高效、稳定的程序打下坚实基础。文档强调了汇编语言的复杂性和挑战性,鼓励读者在实践中不断探索和创新。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值