【附复现代码】基于PINN的论文创新思路

最近有一个大热门:物理信息神经网络(PINN),不仅是各大顶会常客,还连登《Nature》。

PINN是将物理定律嵌入深度学习框架,约束神经网络训练的新型方法。特别适用于解决AI交叉学科中复杂的偏微分方程。

可以说,PINN能够大大降低实验难度,让你更容易得到理想的结果,而且结合PINN的研究更具有创新性,这就是PINN现在特别好发paper的原因!

PINN这么好用,大家都学会了吗?文收集了70个PINN过去1年内的最新创新研究,其中有多篇研究发表在《Nature》上。而且全部都有对应的开源代码

大家可以把论文下载下来,然后通过代码复现来学习如何更好的使用PINN。

下滑查看全部70个PINN创新研究

  1. 《Nature》用于解决时间相关模式分辨声子玻尔兹曼传输方程的PINN

  2. 《Nature》多层次物理学指导深度学习解决计算结构力学中的偏微分方程

  3. 《Nature》基于PINN模拟热腔流

  4. 《Nature》用于现实世界优化任务的PINN计算

  5. 《Nature》PINN用于锂离子电池退化稳定建模和预测

  6. 《Nature》PINN建模生理时间序列以进行无袖带血压估计

  7. 使用PINN的基于物理的动态模型混合

  8. 用于求解偏微分方程的PINN中的可学习激活函数

  9. 使用PINN分析婴儿灌注 MRI

  10. PINN在函数微分方程中的应用:圆柱近似及其收敛保证

  11. 在PINN中通过投影保证守恒定律

  12. SincKAN在PINN中的应用

  13. PINN进行动态系统的响应估计和系统识别

  14. 用于训练PINN的双锥梯度下降

  15. PINN影响函数

  16. PINN用于铁电微结构演化的相场模型

  17. 解决积分算子问题的高效PINN

  18. 点神经元学习:一种新的PINN架构

  19. PINN的函数张量分解

  20. 通过软约束PINN求解振子微分方程的小数据特征性能研究

  21. 用于求解微分方程的PINN

  22. Lyapunov weights在PINN中传达时间的意义

  23. 使用最小二乘法优化变分PINN

  24. 改进PINN可减轻梯度相关故障

  25. 使用PINN和新的因式分解方程进行同步 P 波和 S 波地震走时层析成像

  26. 用于解决偏微分方程逆问题的数据引导PINN

  27. 基于物理信息的卷积神经网络的自动机器学习

  28. 贝叶斯数据同化的随机PINN

  29. 用于解决正向和逆问题的KINN

  30. PINN解决一维层流火焰的正向和逆问题

  31. 采用基于PINN来优化蚊子种群动态中的微分方程

  32. 结合PINN和有限差分求解正向和逆时空 PDE

  33. 实用的训练算法区域优化 PINN

  34. 通过进化计算发现用于解决偏微分方程的PINN模型

  35. 用于直流阻断器放置的物理信息异构图神经网络

  36. 用于多旋翼吊装系统建模的PINN

  37. 共形PINN

  38. 利用宽网络和有效激活最小化残差损失的PINN

  39. PINN中的最佳时间采样

  40. 利用PINN推断二维湍流参数并重建

  41. 用于供水系统的PINN

  42. 使用PINN表征抗心律失常药物对心脏电生理的影响

  43. 使用PINN重建木星磁场

  44. 评估PINN在地震和爆炸震相区分中的性能

  45. 以天体和等离子体物理学为基础用于解决偏微分方程的PINN

  46. 通过PINN识别生物组织的异质微机械特性

  47. 通过物理信息神经网络识别生物组织的异质微机械特性

  48. 使用PINN近似 Fisher 方程的精确解系列

  49. 具有硬线性等式约束的PINN

  50. 基于PINN的风流场数据同化框架

  51. 使用PINN模拟全球表面灰尘沉积

  52. 基于PINN和网格变换的翼型亚音速流动求解器

  53. PINN逆建模方法快速评估左心室收缩力

  54. 用于解决一般几何形状的固体力学问题的PINN

  55. 用于具有时空和幅度多尺度特性的Kelvin-Helmholtz不稳定性的PINN

  56. 平滑核梯度加速的物理信息深度学习SK-PINN

  57. 更快速求解PINNs的高阶ReLU-KAN

  58. 用于耦合移动边界偏微分方程的PINN方法

  59. 利用PINNs近似系外行星大气中的瑞利散射

  60. 通过代数包含边界和初始条件改进PINNs

  61. 用于界面动力学多相场模拟的PINN

  62. 线性椭圆方程一维边界值问题的PINN的鲁棒误差估计

  63. 椭圆偏微分方程的一致 PINN 的收敛和误差控制

  64. PINN的优化过程

  65. 退火自适应重要性抽样法在 PINN 中用于求解高维偏微分方程

  66. PINN自适应定位和实验点选择

  67. TGPT-PINN进行非线性模型降阶

  68. PINN中的非傅里叶位置嵌入

  69. PINN中的特征映射

  70. 损失景观视角的PINN训练挑战

70个PINN创新研究 paper与代码文件

2b334c16ce676407d271156add975e4d.png

061c8792c03ebf0f69f2db60eeb1e353.png

想要全部paper与代码,欢迎扫码无偿下载

07bec1f9469f5cdc24a50bd7ee267cd9.png

以上70个PINN的创新研究,都是过去1年内的,还有多个研究登上了《Nature》。不仅时效性很新,而且还得到了学术界的广泛认可。

我在整理的时候,也帮大家把论文的创新思路都翻译成中文,方便大家直接找自己想要的领域去学习。

而且,全部70个PINN创新思路,都有对应的开源代码,方便大家复现,或者拿来魔改到自己的实验里。

资料无偿分享,有需要的小伙伴可以来扫码领取。

f6ae5a2e32b648eaee6dfa9f6ecbc8ff.png

扫码下载70个PINN创新思路paper+code

还有很多同学处在PINN的入门阶段。直接去阅读论文会有一定的难度。这些同学更需要由PINN领域的专业老师来带领进行入门学习。

这里也分享一个完全免费的PINN入门课。由美国知名高校博士择木老师主讲。择木老师主要从事物理信息神经网络、无损检测和结构模态识别等前沿研究。

择木老师发表过十余篇顶会论文,在MSSP发表PINN相关一作,并担任多个国际知名期刊审稿人,包括MSSP、JSV、SCHM和ES等。

这个课是完全免费的,感兴趣的同学可以扫码学习。

6ea1bb0fa84041ec884ace63bdd0ecf2.png

70个PINN创新研究 paper与代码文件

a84595264588160854a052e0eb0cfb08.png

1b3bf3b7f61064f2f2b13745b77064f1.png

629479b438dadaa8efb340643fd240d3.png

想要全部paper与代码,欢迎扫码无偿下载

### 使用物理信息神经网络 (PINN) 求解水动力学方程 #### 物理信息神经网络简介 物理信息神经网络(Physics-Informed Neural Networks, PINNs)是一种结合了传统机器学习技术和物理学原理的方法。通过将物理规律嵌入到损失函数中,使得模型不仅依赖于数据驱动的学习过程,还能遵循已知的自然法则。 对于求解杂的流体力学问题而言,PINNs可以有效地利用有限的数据集并同时考虑系统的内在特性来提高预测精度和泛化能力[^2]。 #### 构建PINN框架解决水动力学问题的具体步骤如下: 1. **定义目标方程** 需要先明确所研究的对象及其对应的控制方程。例如,在处理河流中的水流流动时,通常会涉及到浅水波方程组或其他形式的质量守恒、动量平衡等基本关系式。 2. **设计神经网络结构** 接下来构建一个多层感知器或多维卷积神经网络作为基础架构。输入变量可能包括时间t、空间坐标(x,y,z),而输出则是待求解的状态参数如速度u,v,w或压力p等。 3. **引入物理约束项至损失函数** 将上述提到的目标方程转化为残差表达式,并将其加入到总的优化准则之中。这样做的目的是为了让训练过程中产生的误差能够反映实际物理现象之间的偏差程度。 4. **准备初始边界条件与观测资料** 收集必要的实验测量结果或者数值仿真得到的历史记录作为监督信号的一部分;另外还需设定合理的初边值设置以确保计算域内的连续性和封闭性。 5. **执行反向传播算法调整权重直至收敛** 利用梯度下降法或者其他高效的最优化技术迭代更新连接权系数直到达到满意的拟合效果为止。 6. **验证测试阶段评估性能表现** 对最终获得的最佳配置下的NN进行一系列严格的检验工作,比如对比标准解析解、统计特征分析以及敏感度试验等方面的内容。 ```python import tensorflow as tf from scipy.integrate import solve_ivp def pinn_model(t, y): u = model(tf.convert_to_tensor([[t]])) # 假设model是一个已经建立好的TensorFlow/Keras模型实例 du_dt = ... # 计算导数部分,具体实现取决于使用的自动微分库 # 这里省略了详细的编细节 residual = mass_conservation(u) # 定义质量守恒方程的形式 + momentum_balance(du_dt,u) # 加上动量平衡方程... return residual.numpy() # 初始化时间和状态向量 time_span = [0., T_final] initial_conditions = ... solution = solve_ivp(fun=pinn_model, t_span=time_span, y0=initial_conditions) plt.plot(solution.t,solution.y.T) plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值