文章目录
前言
本文是智能化军事系列文章第一章——智能赋能OODA环。
系列文章链接:
- 智能化军事【一】智能赋能OODA环
- 智能化军事【二】军事AI应用场景
- 智能化军事【三】军事AI应用痛点及解决方案
- 智能化军事【四】AI芯片在智能化军事中的应用模式
- 智能化军事【五】精确制导武器智能化实现
- 智能化军事【六】国外研究进展
OODA环
简介
随着科学技术的飞速发展,信息化支持下的体系作战将是未来战争的一种主要样式 ,基于“感知-判断-决策-行动(OODA)”成为未来战争的重要制胜机理。战术层面的指挥控制一般以观察‑判断‑决策‑行动(Observe‑orient‑decide‑act,OODA)环为指导。由于战场环境日趋复杂、对抗多域多维,从战场态势到作战策略的映射关系复杂,给OODA环快速解算带来了新的挑战。为确保OODA环解算满足任务需求,将人工智能技术赋能OODA各环节,驱动各环节高效运行,缩短环路解算时间,为打赢战争提供关键支撑。
针对OODA的各个环节,分别从智能感知技术、智能研判技术、自主决策与指控技术、导弹智能飞行技术、导弹集群智能控制技术以及支撑智能技术实现的弹载 AI芯片和集群智能操作系统等方面提出智能赋能OODA涉及的主要关键技术,如图所示。
人工智能在军事领域的应用进展
美国在“第三次抵消战略”中提出智能武器、自动化无人武器系统等新概念武器以发展“改变未来战局”的颠覆性技术,美国战略与预算评估中心提出了“决策中心战”,兵力运用上采用物理上分散、逻辑上一体,通过智能技术加速决策的效率。
在武器装备方面,美军在远程反舰导弹LRASM应用了人工智能技术,可自主感知威胁,实现在线路线规划,智能绕过威胁,提高OODA中感知和决策环节的效率;“战术战斧”巡航导弹配备了智能化实时再瞄准系统,具备在线规划飞行路线和根据毁伤情况重新选择目标的能力,缩短OODA中决策和行动环节的时间;在人工智能技术的军事应用研究方面,DARPA与美国空军研究实验室支持深度学习分析公司开展“对抗环境下的目标识别与自适应”研究项目,提高雷达目标识别系统的感知能力,缩短感知用时;此外,DARPA先后支持洛马公司、BAE系统公司等开展“行为学习自适应电子战”、“自适应雷达对抗”等项目,提高雷达电子对抗过程中的快速分析、自主对抗策略生成等能力,提高OODA中感知环节的能力。2016年,美国辛辛那提大学开发的“阿尔法”空战系统在模拟空战中击败了美国空军上校,体现了人工智能技术在空中格斗OODA环的快速性。
俄罗斯同样将人工智能视为战略竞争的重要领域,加强人工智能在武器装备的应用。俄罗斯自主研发的无人驾驶履带装甲车可在遥控下完成巡逻、侦察、追踪、阻截、攻击等任务,提高OODA中感知和行动环的能力;“波塞冬”核动力潜航器可自主侦察水面下及海底环境并摧毁敌目标,具备较高的智能化水平;俄罗斯军队装备了先进的自动指挥系统,利用人工智能技术将各类情报整理分析,提出战术建议辅助指挥者决策,缩短决策所需时间。
此外,英国和法国也加快研究人工智能的军事应用以谋划军事装备的智能化改造及智能作战应用。英国成立人工智能实验室探索保持未来军事优势的领域,开发SAPIENT系统,利用人工智能技术,可自主决定城市街道监视的内容和方式,减轻士兵的负担、降低人为错误风险,提高作战感知的能力。欧洲空客公司与ANSYS将发布新型人工智能设计工具,为欧洲下一代空战装备系统研发项目“未来空战系统(FCAS)”创建嵌入式飞行控制软件,使用人工智能算法协调蜂群无人机为战斗机导航、与战斗机协同编队飞行等。
中国亦高度重视人工智能技术在军事领域的应用。诸多学者也开展了以武器装备为背景的人工智能方法研究,从武器装备、作战系统、指挥控制、后勤保障等方面研究军事智能化发展的关键技术,缩短作战OODA环的时间。解放军理工大学研发的军事运筹辅助决策系统基于模型库、数据库、知识库、方法库等生成作战方案,进行推演评估,生成辅助决策信息,缩短决策环节的时间。军事科学院研发的“进攻一号”军事专家支持系统,自动生成作战参考方案,辅助指挥者做出正确决策。当前,智能无人系统已经初步应用于战场环境感知、远程精确打击、军事训练、作战支援等方面,在蜂群无人机和指挥控制等方面取得了一定的突破。中国电子科技集团分别于2016年10月、2017年5月、2017年11月实现了67架、119架、200架固定翼无人机集群飞行试验,验证了无人集群智能飞行控制、任务规划、智能决策、动态组网等技术,极大缩短了从决策到行动的时间。
智能赋能OODA主要关键技术
观察:智能感知技术
智能感知的目的是通过有效地接收、探测战场环境信息,并进行样本积累和特征融合,经过充分的学习、处理、分析,优化产生可供导弹使用的信息,完成探测、跟踪、识别等任务。未来战争态势瞬息万变,对态势感知技术提出了更高的要求。传统的态势感知技术面对复杂多变的环境信息难以有效提取特征进行目标识别,而人工智能技术在人脸识别、棋牌对弈等领域的成功应用,其能够处理复杂信息的能力被广泛关注。随着人工智能研究的逐渐深入,具有复杂层次和独特结构的神经网络先后被提出,使得计算机具有类脑的运行模式,解决战场的态势感知和目标识别问题。
未来战争遍及陆、海、空、天、网等复杂战场,面临着对手多层次多方式的博弈对抗,面临着不同侦测平台、不同载荷手段、不同数据格式以及不同分辨率的感知挑战。应突破多维多域环境态势感知理论与方法,借助人工智能技术提升数据处理、信息融合感知、目标快速识别等方面的能力。人工智能技术支撑下的态势感知与信息融合如图所示。
- 基于智能算法的数据处理技术。由于不同体制、不同来源的数据格式差异巨大,所包含的目标属性信息也不尽相同,战场数据是在高对抗干扰、高实时响应条件下得到,存在模糊或丢帧现象,导致侦测信息的威胁特征不明显或在时间和空间维度上不连续,在信息融合前需对侦测数据进行处理。人工智能算法在数据处理、数据理解等方面较传统方法有更强的适应性,如何将智能算法应用在军事侦测数据处理中以提升处理复杂侦测数据的能力,缩短从数据变为信息的周期,是一个重要的研究方向。
- 基于智能算法的信息融合感知技术。多种传感器平台的多时相侦测数据之间的信息融合能更好发挥不同侦测数据源的优势,弥补某一种侦测数据的不足之处。多维多源异质数据中既有可量化的数值型侦测数据、图像数据甚至视频数据,可能还有很多属于描述性的文字信息,信息融合的难度大。人工智能算法在大数据、数据挖掘等方面的研究已逐渐深入,深度神经网络在分析复杂事物关系时有其独特的优势,研究基于智能算法的信息融合感知技术,从多源异质信息中获得全面、准确、高效的目标信息,是提升数据利用效率的关键。
- 基于智能算法的目标快速识别技术。人工智能在目标识别中的应用已深入到民用支付领域,具有很高的正确率和快速性,也是最有可能在军事领域广泛应用的技术之一。然而战场伪装、诱饵等手段能模拟真实目标的外形、温度、电磁特性等有限特征,干扰成像侦察、红外侦察以及电磁侦察等,但难以模拟目标的全部特征。研究基于智能算法的目标快速识别技术,结合目标的众多特征识别伪装及诱饵的漏洞,有效避免伪目标的干扰,缩短从观察到判断的时间,是亟需突破的关键技术之一。
判断:智能研判技术
从感知到判断是一个认知的过程,在历史的战争中这个过程是依靠人来实现的。未来战场中“AI、云、网、群、端”成为全新作战要素,传统以人为主的判断过程可能增大OODA环路的时间,面对捷变的战场态势,若仍由人来分析态势捷变趋势,不仅依赖人的判断经验,也容易贻误战机。未来战场态势的研判将被AI的模型和算法所替代。人工智能算法拥有特征逐层理解与自动分析的能力,能够以非线性的逼近能力实现感知信息到判断结论的映射,从而实现感知信息的高级理解。 为了适应未来捷变作战环境,需要更快、更准确的态势研判技术,提升从行为理解、行为预测到态势判断的能力。
- 基于智能算法的行为理解技术。未来新作战条件下的目标行为通常具有聚集性、群体性和多域性等特点。行为形式复杂多变,包括兵力调整、战斗集结、突然袭击等。在多域复杂环境下,元素规模庞大、行为单元密集、关系演进诡变。当前,人工智能技术在目标识别方面有很大的进展,但对行为识别仍面临较大的挑战,研究基于智能算法的行为理解技术,可以对信息进行深入挖掘与利用,完成目标状态信息向行为理解的转化,为行为预测提供支撑。
- 基于智能算法的行为预测技术。战场中目标的行为数据是具有时空特征的,对一个或多个运动过程的采样所形成的数据信息,如位置、速度等,蕴含了目标的时空序列特征,可以通过运动学模型预测未来可能的轨迹。但对于非轨迹的行为预测,需借助人工智能技术,在目标行为理解的基础上,对行为模式进行学习,进一步挖掘其行为与作战行动间的关联关系,实现对其行为的预测。
- 基于智能算法的态势判断技术。智能感知技术和智能行为理解及预测技术能够支撑战场态势信息的获取和理解,但难以支撑对战场态势的判断。态势判断是做出相应的评价,对于AI,则是做出相应的态势等级判断,等级由军事指挥者制定。基于智能算法的态势判断技术即根据战场态势快速做出判断,辅助军事指挥者做出决策。
决策:自主决策与指控技术
简介
决策是智能化战争对抗的核心和中枢。在无人化及其实战化进程中,自主决策与指控技术是比拼“智力”的重要领域。无人系统在战术层面的自主决策和在战略层面的受人指挥控制是“规则有人、行动无人”的重要体现,即导弹作战是受人指挥,但导弹发射后根据环境、任务的变化改变控制策略自适应地调整弹道完成任务需要自主决策。但导弹自主决策面临战场态势多变、敌方拦截手段多样、对抗模型复杂的难题,从态势到最优策略的映射关系复杂,存在攻防博弈策略不确定、博弈对抗模型非线性强等特点,传统方法在求解攻防博弈问题时存在较大瓶颈。AlphaGo在围棋领域战胜了人类选手,其深度强化学习的方法被迅速用到了决策领域。为了提高导弹在各种战场环境的智能应变能力,需研究基于人工智能的自主决策与指控技术,从战前的规划层面、作战中的指控层面和导弹自主决策层面开展技术研究。人工智能技术支撑下的军事智能辅助决策如图所示。
- 智能任务规划技术。美国兰德公司在《通过机器学习实现空中优势:对人工智能辅助任务规划的初步探索》中指出,人工智能任务规划工具相比现有的人工或自动规划技术具有极大的速度优势。智能任务规划技术就是以人工智能算法为基础,利用数据、知识、场景等驱动方式,根据复杂、多变的飞行环境和敌方的实时情况,预测敌方行为、筹划飞行任务、制定最优方案、优化决策序列、调整飞行轨迹等,在任务规划时就考虑导弹对各种不确定因素的适应性,为执行任务奠定有利条件。
- 智能指挥控制技术。未来的指挥控制一是靠人类指挥员,二是靠虚拟智能指挥大脑。越是战术层面的作战,越需要发挥虚拟指挥大脑的作用,尤其在高动态、强干扰、快响应的作战方面,越能发挥虚拟指挥大脑的优势。研究智能指挥控制技术,构建具有体系开放、信息闭环、任务重构、指挥综合等能力特征的智能指挥控制体系,利用人工智能技术完成作战信息和资源的动态管理和分配,在复杂多变的信息环境下,实现指挥员与智能化指挥控制系统无缝链接。
- 智能决策技术。导弹在执行任务的过程中接收智能指挥控制系统的任务指令,但在复杂、不确定的作战条件下,仍需要具备自主决策的能力,通过先验知识以及与环境交互得到的信息,进行分析和决策。智能决策技术就是通过态势信息及预测信息借助人工智能算法,针对拦截威胁和目标特性,自主制定攻击方式,以及在战场突发情况下实时采取机动、干扰等必要措施,调整攻击方案,提高作战效能。
智能空战决策研究
三大方向
随着航空科学技术的发展,现代空战逐渐演化为以空空导弹为主要进攻手段,依托综合态势感知与战术决策,在人类飞行员的操纵下,进行的多回合、高复杂度、强风险性空中对抗。一个完整的交战过程涉及多个复杂的认知决策环节,如态势理解、战术机动和攻击占位等。其决策的智能化程度、精准度以及适配度直接决定了空战的胜负。目前,空战决策主要依赖人类飞行员完成,为后续达成媲美乃至超越人类的空战水平,打破人类固有战术认知与生理机能限制,发展先进的智能空战自主决策技术是确保制胜未来空天战场的核心关键。
同时由于空战具有高动态性、强实时性、不确定性和非完美信息等特点,该问题通常被建模为非完美信息下的多优化目标动态博弈问题。目前针对智能空战决策问题的研究主要涵盖3大方向:用于建模及求解空战攻防博弈问题的博弈理论、将空战问题建模为多目标决策优化问题以及对应的优化理论、具有自学习能力可以不断进化的人工智能决策技术(如图所示)。这些方法是实现全自主空战认知决策的核心关键技术,即智能空战之“魂”。
人工智能类的空战决策方法主要包括基于规则的专家系统和基于深度神经网络的自演进机器学习类方法。其中,基于深度神经网络的自演进机器学习类方法主要以深度学习和深度强化学习2种形式为主。
基于规则的专家系统。
基于规则的专家系统采用类似IF-ELSE-THEN的谓词逻辑构建产生式规则,明确地定义决策系统“什么情况下该做什么”,是人工智能的初级形态。由于专家系统易于工程化且决策行为具有完全可解释的优点,使其在工程中得到了更为广泛的应用,但也存在一定局限:
- 对于基于规则的专家系统而言,空战规则是其核心,而现有智能空战产生式规则的设计主要依赖人类空战专家完成。考虑到完整的空战规则集合不仅包括进攻和防守等基础战术,更重要的是需要明确界定各种边界条件以防止出现未定义的情况,从而对决策结果产生未知影响;
- 由于空战状态空间维度较为庞大,规则设计过程中往往会面临“维数灾难”问题。即使一对一空战规则能够通过较为理想的设计覆盖实战情况,但随着交战智能体数量的线形增长,规则设计的复杂度呈指数级增长,建模具有该复杂度的空战智能体仅仅依靠单纯的人工手段是不可能完成的;
- 基于规则的算法其自主决策能力存在很明显的认知上限,其行为表现不会超出设计者预先设定的能力,因此空战智能体的行为缺乏多样性,更无法演化出不同于人类做法的创新性战术行为。
基于深度学习的空战行为克隆。
深度学习是近年来人工智能领域的研究热点方向之一,其理论和方法在诸多领域取得了广泛应用,在诸如计算机视觉、自然语言处理和用户推荐系统等复杂问题中取得了巨大成功。直接通过专家标注的数据监督训练空战决策智能体的方式被称为行为克隆。顾名思义,具有空战经验的飞行员在仿真器中亲身参与空战决策,仿真系统将每个决策时刻下的状态和对应的飞行员决策动作记录下来作为训练样本,然后进行离线训练,通过神经网络强大的拟合能力,拟合出空战态势和此态势下所需的决策动作之间的函数关系,这相当于机器在克隆飞行员的动作。在应用部署时,将实时空战状态输入训练好的神经网络模型进行前向传播,输出决策指令。空战行为克隆的算法框架如图所示。一般而言,这种方法能够使智能体快速学会基本战术机动行为。
空战行为克隆是一种数据驱动的机器学习方法,无需对空战动力学的内在机理进行完善的数学建模,其不足包括:
- 训练数据完全来源于飞行员手动标注,因此训练出的深度神经网络空战决策能力无法超过产生标注的某个飞行员;
- 若采用多个飞行员标注数据完成算法训练,将导致训练梯度冲突,往往导致训练难以收敛;
- 监督学习需要一定数量的训练样本,受限于标注专家的精力和时间成本,工程上往往无法提供所需的标注量。
但是,行为克隆对空战博弈策略的演化建立了一个基于专家认知的初始基准,虽然无法通过该方法直接训练得到可以直接应用的智能体,但该方法可以看作是深度强化学习自我博弈学习方式的空战知识初始化手段,能够显著加快强化学习算法的收敛速度和学习效率,这一观点已在棋类博弈、星际争霸2等多个相关领域得到了证实。
基于深度强化学习的自博弈对抗
深度强化学习是近年来人工智能领域最为成功的方法之一,谷歌的DeepMind团队在Atari游戏环境中通过深度学习和强化学习的有机融合,提出了深度Q网络(Deep-Q-Network,DQN),率先实现了人类专家级别的操控水平。深度强化学习一般被形式化为马尔可夫决策过程求解问题:智能体从当前环境获取观测,产生决策动作并与环境进行交互,环境根据智能体的表现反馈奖赏给智能体,智能体收到奖赏后不断修正自己的行为,好的奖赏将会激励智能体继续做出一致行为,相反,则将惩罚智能体使其避免做出类似行为。深度强化学习智能体通过大量上述试错模式,以最大化预期奖赏的方式进行学习和进化,以获取最优策略。空战强化学习的算法框架如图所示。
智能空战关键问题阐述
空天战场的深度不确定性
未来空天战场将面临要素多元化、对抗状态随机化、决策博弈智能化、态势信息片段化等典型的深度不确定性挑战。其中不确定状态下的非完美信息空战决策能力将成为应对该挑战的关键突破点。非完美信息会直接影响对敌方目标进行有效的识别、定位、预测及攻击等一系列作战行为,将导致空战决策缺乏足够的信息基础,从而降低决策响应及准确程度。故如何在非完美信息博弈中实现对敌方的智能搜索、意图预测及战术推理,做到“找得到、猜得准、打得赢”,是在未来高动态不确定空战背景下必须解决的核心问题。
智能空战策略的解释性与安全性
人工智能的可解释性是指人工智能算法能够以人类可理解的方式进行解释或表达,智能空战策略的解释性旨在生成人类可理解的空战策略。基于深度神经网络的人工智能算法的输入与输出映射关系复杂,以目前的技术手段还无法完整了解整个神经网络模型的内部运作方式。这导致当人工智能算法出现错误决策时,我们无法清晰地获知算法出错的原因,从而无法对算法做出精准的修正。因此,为了使人类能够充分理解智能空战算法决策的内在逻辑,从而使飞行员充分信任智能空战系统,就必须深入研究人工智能方法的解释性。同时,智能空战算法应能充分理解安全高度、安全飞行包线及失速边界等飞行安全要求,避免因遭受欺骗或干扰而导致的错误决策行为。因此,对于智能空战问题来说,能否突破智能算法的解释性和安全性技术将直接影响人工智能在空战领域的成熟落地。
从虚拟仿真到真实飞行的迁移
从虚拟仿真到真实环境的迁移学习(Simulation to Reality, Sim2Real)是强化学习中的难点问题之一。在智能空战问题中,直接使用算法驱动全尺寸真机开展训练,存在以下问题。
- 样本效率问题:强化学习算法在解决智能体控制问题时所需要的样本量一般会达到千万数量级,在现实环境中采集如此数量级的实战样本需要庞大的成本;
- 训练过程安全性问题:由于强化学习需要通过智能体在环境中进行大范围的随机采样来进行试错,因而在某些时刻其行为会严重影响飞行安全。
如果在虚拟仿真环境中进行强化学习算法的训练,以上两个问题均可迎刃而解。但是,由于虚拟仿真环境相对于真实物理环境始终存在误差,导致在虚拟仿真环境中学习到的最优策略无法直接应用在真实物理环境中。因此,研究智能空战策略从虚拟仿真环境到真实飞行环境的迁移学习成为了智能空战工程实践过程中必须解决的技术难题。
智能空战策略的协同性
现代空战具备典型的体系化、层次化和协同化特征,因此未来的智能空战系统也理应具备多智能体协同空战联合策略求解能力。在多智能体系统中每个智能体的策略不仅取决于自身,还取决于其它智能体的策略,导致智能体的策略学习具有不稳定性,这使得多智能体系统的策略学习变得更加复杂。在更大规模的多智能体空战对抗博弈过程中,基于规则的专家系统和传统的优化理论方法难以较好地处理“维数灾难”和策略不稳定问题,而基于深度神经网络的自演进机器学习类方法为解决此类问题提供了新的可能。多个智能体能否自组织并演化出媲美甚至超越人类的协作策略,是多智能体协同空战算法必将面对的技术难题。
人工智能系统可解释性及漏洞挖掘研究
在人工智能研究中,智能算法的不确定性、可解释性、可迁移性以及安全性等问题是实现通用智能的重要挑战。为了充分理解智能系统的内在逻辑,必须深入研究人工智能方法的可解释性。军事领域的智能化应用对可靠性要求极高,因此应当开展针对军事智能系统可解释性、不确定性量化评估、抗干扰能力等问题的研究。
到目前为止,军事领域的许多智能化应用仍然停留在小规模的理想环境,与真实作战环境有较大差距。此外,对于有监督学习模型,往往无法正确地处理未经训练过的场景,尤其面对具有欺骗性质的输入信息,智能系统表现出迁移能力较差、易受干扰等问题。为应对智能系统面临的安全挑战,确保军事智能系统对抗欺骗攻击的鲁棒性,保证实战对抗中的稳定性和模拟训练的可靠性,需要开发能够有效防御敌对欺骗意图的军事智能系统,既能够应对特定、预先设定的敌对攻击,也要能够对抗突发情境下的攻击。
目前研究表明,以深度学习为代表的人工智能技术可能存在一些未知的缺陷和漏洞,因此在实践应用过程中应当加强智能系统漏洞挖掘的研究,努力构建可解释性军事智能系统,从而抵抗各类敌对攻击。
行为:智能飞行技术
由于拦截系统能力的不断提升,对进攻方提出了更高的要求,导弹需具备宽速域、大空域、大过载机动飞行能力,从而提升装备的格斗能力。对控制系统、动力系统、导引系统、目标识别系统等提出了更加严苛的条件,面临弹道敏捷重构、机动精确控制、平台热防护等难题。传统的飞行技术难以应对复杂动态环境,通常是“发射后不管”的程序化模式,为充分发挥导弹的机动能力,需突破智能飞行技术,从弹道、控制和结构、材料等方面提升智能水平,实现“发射后可变”的自主化。
- 弹道智能在线重构技术。传统模式弹道相对固定,按照事先设计好的程序执行飞行动作。未来智能化战场需要根据态势信息灵活采取机动的智能导弹。研究弹道智能在线重构技术,借助人工智能算法实时进行飞行评估与弹道敏捷重构,面对多层防御系统的拦截,基于弹载传感器感知到的拦截威胁,智能重构弹道,采取躲避威胁区、压缩拦截弹发射窗口、机动摆脱等方式,实现突防后完成对目标的精确打击。
- 智能飞行控制技术。未来导弹具有多飞行状态、多任务模式、大飞行包线的特点,系统非线性强,时变性剧烈,单一的控制律难以满足稳定飞行的需求。针对典型、简单和复杂飞行模式,研究基于人工智能算法的制导控制技术,基于有限计算资源,突破主动适应控制、深度学习控制在控制上的瓶颈问题。
- 支撑智能飞行的结构、材料等基础技术。综合运用空气动力学、气动弹性力学、飞行力学、智能材料结构、现代机械工程和仿生学等学科技术,借助智能制造技术,满足先进发动机、超性能复合材料等高效轻质、高抗压、高刚度、耐高温、结构功能一体化及高效低成本制造的技术需求。在智能变结构方面,配合智能控制系统实现外形的自适应变化,适应宽速域和大空域,具备长时间滞空、远距离飞行、高速机动和超强突防打击的作战能力。
行为:集群智能控制技术
信息化和智能化支撑下的未来战争将呈现出集群对抗集群的趋势,高速集群作战将成为战斗力倍增的有效手段。在传统模式下,即使采用多导弹共同完成打击任务,导弹之间也相对独立,按各自设定的程序完成任务,彼此之间不具备协同能力。集群智能控制技术基于通信/数据链技术的不断发展以及自主能力的不断提升,由“单体独立”向“集群协同”发展,成为实施集群作战的核心技术。战场上集群智能系统应呈现自发、有组织的任务行为过程,牵引出研究的集群技术涵盖探测、侦察、通信、任务规划、决策、构型、控制、评估等领域。下面从集群的构型设计、构型控制到作战过程中的目标分配,思考通过人工智能技术提升集群协同作战的能力。
- 集群智能构型设计技术。在不同飞行任务中,集群需要根据任务要求与环境约束,选择最优的集群构型。利用优化算法可以求解最优编队构型的几何参数,但是从集群作战策略到最优编队构型的决策难以用数学建模,借助人工智能技术可以求解集群策略到编队构型的最优映射关系,得到适用于不同作战任务的编队构型。
- 集群编队构型智能控制技术。在集群执行任务的过程中,根据飞行任务、战场态势和作战环境的需求,集群需要适时地变换与保持构型,既包括面向空间、时间和通信拓扑的构型切换、构型收缩、扩张等,也包括编队构型的动态调整和重构,如编队成员增加或减少时的构型调整,以及作战目标改变、威胁环境变化等情况下的编队重构。集群编队构型智能控制技术可以在不同作战场景中对集群进行几何构型和组织结构的调整,增强集群的环境与任务适用性。
- 目标智能分配技术。目标分配即在满足作战任务要求和集群约束条件下,将不同位置、价值和威胁的目标合理分配给集群中的作战单元,使得集群作战效能最优。然而捷变的战场态势使得远程指挥控制难以合理分配目标,需要更高实时性和准确性的分布式目标分配算法。研究目标智能分配技术,通过各种群智能算法,根据威胁的判断、目标优先权的排序及目标分配等任务的动态调度,智能协调非合作目标群任务分配,实现基于态势变化和集群单元能力的智能目标分配。
智能技术的弹载工程化应用需求
智能技术的应用需以硬件设备的算力为基础,海量数据的处理需要计算实现。加强硬件底层的架构建设,支撑上层智能技术的应用程序,还需要搭建连接底层硬件和上层应用程序的桥梁———操作系统。未来战争中导弹不仅要具备目标感知、在线规划和智能控制等能力,还需要协同作战,这就需要操作系统满足智能算法实时性的需求、具备支持分布式协同处理的能力。为实现智能技术的弹载工程化应用,需突破弹载AI芯片和集群智能操作系统技术,从智能AI芯片、集群智能操作系统和AI生态体系构建三方面开展研究。
- 国产智能AI芯片的应用技术。当前人工智能算法大都在计算机环境中实现,其环境与弹载计算环境有很大的不同,如何使人工智能算法在弹载AI芯片上实现成为亟待解决的问题。国产智能AI芯片的应用技术就是基于神经网络架构的智能AI芯片,实现CNN/RNN(Convolutional Neural Network/Recurrent Neural Network)等人工智能算法处理,为在线任务规划、神经网络控制等智能算法的弹载应用提供强大的算力支持,实现海量数据样本的深度学习。
- 集群智能操作系统研究。智能化赋能可以具有对环境的感知能力和一定的自主性,然而难以满足集群多样任务的需求。而通过集群智能操作系统技术的研究,可高效管理分布式软、硬件资源,实现互连、互通、互操作。在资源管理层,设计分布式管理架构和接口,支撑标准化、模块化、平台化;在行为管理层,设计面向作战的集群操控支撑架构,支撑集群感知、集群判断、集群决策、集群控制等行为。
- AI生态体系构建。实现AI芯片、框架和自主操作系统深度耦合全生态发展,研究与弹载智能算法框架结合的AI生态体系结构,构建集芯片、操作系统和应用于一体的软硬结合技术体系,推进智能技术在军事武器装备中的应用,全面加速OODA循环效率,为确保高烈度、多维多域、强不确定性复杂战场环境条件下取得对抗优势提供新质动力。
参考资料
- 智能传感器应用实践 拓展阅读 4-2 AI伴着导弹飞 - 道客巴巴
- 无人机蜂群联合指挥作战技术详解_无人机蜂群的网络安全-CSDN博客
- 7598架无人机表演背后惊人的AI战力|军用无人机|大疆|通信|飞行_手机网易网
- 【特约报告】导弹武器智能精确制导技术发展分析
- 陈栋, 田宗浩. 面向深度学习的弹载图像处理异构加速现状分析[J]. 航空兵器, 2021, 28(3): 10-17.
- 美国AI辅助高超声速导弹防御能力发展浅析
- 飞航导弹人工智能应用
- 于俊庭, 李少毅, 张平, 罗振宇. 光电成像末制导智能化技术研究与展望[J]. 红外与激光工程, 2023, 52(5): 20220725. DOI: 10.3788/IRLA20220725
- 陈咸志, 罗镇宝, 李艺强, 陈陶. 自动目标识别在图像末制导中的应用[J]. 红外与激光工程, 2022, 51(8): 20220391. DOI: 10.3788/IRLA20220391
- 罗天翔.基于深度强化学习的近距空战轻量化决策网络设计[D]. 电子科技大学, 2024. DOI: 10.27005/d.cnki.gdzku.2024.005349.
- 罗仁威.基于强化学习的非对称空战多智能体系统的设计与实现[D]. 电子科技大学, 2023. DOI: 10.27005/d.cnki.gdzku.2023.004687.
- 郭星泽.基于深度强化学习的多作战智能体协同围捕研究[D]. 大连交通大学, 2024. DOI: 10.26990/d.cnki.gsltc.2024.000215.
- 段续庭,周宇康,田大新,等.深度学习军事领域应用综述[C]//中国科学技术协会,交通运输部,中国工程院,湖北省人民政府.2022世界交通运输大会(WTC2022)论文集(交通工程与航空运输篇).北京航空航天大学交通科学与工程学院;军事科学院系统工程研究院;中国人民解放军军需工业学院;,2022:9.DOI:10.26914/c.cnkihy.2022.019819.
- 宋晓茹,刘康,高嵩,等.基于深度学习的军事目标识别算法综述[J].科学技术与工程,2022,22(22):9466-9475.
- 祝学军,赵长见,梁卓,等.OODA智能赋能技术发展思考[J].航空学报,2021,42(04):16-25.
- 符惠桐.基于深度学习的目标识别轻量化模型研究[D]. 西安工业大学, 2022. DOI: 10.27391/d.cnki.gxagu.2022.000123.
- 孙智孝,杨晟琦,朴海音,等.未来智能空战发展综述[J].航空学报,2021,42(08):35-49.
- 郭亚楠,曹小群,何友,等.人工智能赋能军事领域的思考与展望[J].计算机仿真,2024,41(05):1-6.
- 张龙,雷震,冯轩铭,等.军事大模型:应用分析、关键技术和评估体系框架[C]//国防科技大学系统工程学院.第六届体系工程学术会议论文集—体系工程与高质量发展.军事科学院系统工程研究院;中国人民解放军31511部队;,2024:14.DOI:10.26914/c.cnkihy.2024.028436.
- 崔翛龙,高志强,姬纬通,沈佳楠,张敏,邱鑫源.“艾武大模型+”:一种军事大模型系统的开发与实证[J].数据采集与处理,2024,(3):588-597
- 新一代箭载高速光纤总线技术研究与应用*_参考网