使用googlenet模型实现图像分类
#include "pch.h"
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv::dnn;
using namespace std;
using namespace cv;
String model_bin_file = " .caffemodel";
String model_txt_file = " .prototxt";
String labels_txt_file = " .prototxt";
vector<String>readLabels();
int main(int argc, char** argv)
{
Mat src = imread("",1);
if (src.empty())
{
cout << "could not load the picture..." << endl;
return -1;
}
namedWindow("input image", CV_WINDOW_NORMAL);
imshow("input image", src);
vector<String>labels = readLabels();
Net net = readNetFromCaffe(model_txt_file, model_bin_file);
if (net.empty())
{
cout << "read caffe model data failure..." << endl;
return -1;
}
Mat inputBlob = blobFromImage(src, 1.0, Size(224, 224), Scalar(104, 117, 123));
Mat prob; //最后一层
for (int i = 0; i < 10; i++)
{
net.setInput(inputBlob, "data");
prob = net.forward("prob");
}
Mat probMat = prob.reshape(1, 1);
Point classNumber;
double classProb;
minMaxLoc(probMat, NULL, &classProb, NULL, &classNumber);
int classidx = classNumber.x;
printf("\n current image classification :%s, Possible : %.2f", labels.at(classidx).c_str(), classProb);
putText(src, labels.at(classidx), Point(20, 20), FONT_HERSHEY_SCRIPT_SIMPLEX, 1.0, Scalar(0, 0, 255), 2, 8);
imshow("Image Classification",src);
waitKey(0);
return 0;
}
vector<String>readLabels()
{
vector<String>classNames;
ifstream fp(labels_txt_file);
if (!fp.is_open())
{
cout << "could not open the file..." << endl;
exit(-1);
}
string name;
while (!fp.eof()) //如果不是文件结尾
{
getline(fp, name);
if (name.length())
{
classNames.push_back(name.substr(name.find(' ') + 1));
}
fp.close();
return classNames;
}
}
结果显示:
使用SSD模型实现对象检测
SSD检测速度很快,检测速度与图片的大小无关,与图像内检测对象的数量有关。
#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>
#include <iostream>
using namespace cv;
using namespace cv::dnn;
using namespace std;
const size_t width = 300;
const size_t height = 300;
String labelFile = "D:/vcprojects/VGGNet/ILSVRC2016/SSD_300x300/labelmap_det.txt";
String modelFile = "D:/vcprojects/VGGNet/ILSVRC2016/SSD_300x300/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel";
String model_text_file = "D:/vcprojects/VGGNet/ILSVRC2016/SSD_300x300/deploy.prototxt";
vector<String> readLabels();
const int meanValues[3] = { 104, 117, 123 };
static Mat getMean(const size_t &w, const size_t &h) {
Mat mean;
vector<Mat> channels;
for (int i = 0; i < 3; i++) {
Mat channel(h, w, CV_32F, Scalar(meanValues[i]));
channels.push_back(channel);
}
merge(channels, mean);
return mean;
}
static Mat preprocess(const Mat &frame) {
Mat preprocessed;
frame.convertTo(preprocessed, CV_32F);
resize(preprocessed, preprocessed, Size(width, height)); // 300x300 image
Mat mean = getMean(width, height);
subtract(preprocessed, mean, preprocessed);
return preprocessed;
}
int main(int argc, char** argv) {
Mat frame = imread("D:/vcprojects/images/persons.png");
if (frame.empty()) {
printf("could not load image...\n");
return -1;
}
namedWindow("input image", CV_WINDOW_AUTOSIZE);
imshow("input image", frame);
vector<String> objNames = readLabels();
// import Caffe SSD model
Ptr<dnn::Importer> importer;
try {
importer = createCaffeImporter(model_text_file, modelFile);
}
catch (const cv::Exception &err) {
cerr << err.msg << endl;
}
Net net;
importer->populateNet(net);
importer.release();
Mat input_image = preprocess(frame);
Mat blobImage = blobFromImage(input_image);
net.setInput(blobImage, "data");
Mat detection = net.forward("detection_out");
Mat detectionMat(detection.size[2], detection.size[3], CV_32F, detection.ptr<float>());
float confidence_threshold = 0.2; //提高后增强检测精度
for (int i = 0; i < detectionMat.rows; i++) {
float confidence = detectionMat.at<float>(i, 2);
if (confidence > confidence_threshold) {
size_t objIndex = (size_t)(detectionMat.at<float>(i, 1));
float tl_x = detectionMat.at<float>(i, 3) * frame.cols;
float tl_y = detectionMat.at<float>(i, 4) * frame.rows;
float br_x = detectionMat.at<float>(i, 5) * frame.cols;
float br_y = detectionMat.at<float>(i, 6) * frame.rows;
Rect object_box((int)tl_x, (int)tl_y, (int)(br_x - tl_x), (int)(br_y - tl_y));
rectangle(frame, object_box, Scalar(0, 0, 255), 2, 8, 0);
putText(frame, format("%s", objNames[objIndex].c_str()), Point(tl_x, tl_y), FONT_HERSHEY_SIMPLEX, 1.0, Scalar(255, 0, 0), 2);
}
}
imshow("ssd-demo", frame);
waitKey(0);
return 0;
}
vector<String> readLabels() {
vector<String> objNames;
ifstream fp(labelFile);
if (!fp.is_open()) {
printf("could not open the file...\n");
exit(-1);
}
string name;
while (!fp.eof()) {
getline(fp, name);
if (name.length() && (name.find("display_name:") == 0)) {
string temp = name.substr(15);
temp.replace(temp.end() - 1, temp.end(), "");
objNames.push_back(temp);
}
}
return objNames;
}
MobileNet模型与数据介绍
FCN模型图像分割
Model Zoo 模型库
在这里插入代码片