python人工智能1——机器学习和深度学习

机器学习和深度学习的介绍

在这里插入图片描述

神经元和神经网络的介绍

在这里插入图片描述

感知机和多层神经网络

在这里插入图片描述
在这里插入图片描述

激活函数和神经网络思想

在这里插入图片描述
在这里插入图片描述

Tensor基础

在这里插入图片描述
tensor的数据类型
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
使用GPU进行计算
在这里插入图片描述
在这里插入图片描述

梯度下降和反向传播

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

手动实现线性回归

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

优化器

在这里插入图片描述

损失函数

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

# #!/usr/bin/env python
# # -*- coding:utf-8 -*-

import torch
from torch import nn
from torch import optim
import numpy as np
from matplotlib import pyplot as plt

x = torch.rand([50,1])
y = x * 3+0.8

class Lr(nn.Module):
    def __init__(self):
        super(Lr, self).__init__()
        self.linear = nn.Linear(1,1)
    def forward(self,x):
        out = self.linear(x)
        return out
model = Lr()
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(),lr=1e-3)
for i in range(2000):
    out = model(x)
    loss = criterion(y,out)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    if (i+1)%20==0:
        print('Epoch[{}/{}],loss:{:.6f}'.format(i,2000,loss.data))
model.eval()
predict = model(x)
predict = predict.data.numpy()
plt.scatter(x.data.numpy(),y.data.numpy(),c="r")
plt.plot(x.data.numpy(),predict)
plt.show()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值