科里奥利加速度

本文详细介绍了科里奥利加速度的概念及其在转动参照系中的计算方法,通过两种不同的推导方式,深入解析了在平动和转动参照系中物体加速度的变化规律。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、什么是科里奥利加速度?

科里奥利加速度是转动参照系中物体加速度的组成部分。
在转动参照系中,加速度的计算比平动参照系复杂,因此引入科里奥利加速度。

二、计算科里奥利加速度

假设转动参照系 S ′ S' S相对于 S S S O O O以角速度 ω ⃗ \vec\omega ω 作旋转运动。在参照系 S ′ S' S中有一个点 P P P以恒定速度 v ⃗ \vec v v 运动,并且 O P → = r ⃗ \overrightarrow{OP}=\vec r OP =r ,那么 P P P S S S系中的加速度为 a ⃗ = 2 ω ⃗ × v ⃗ + ω ⃗ × ( ω ⃗ × r ⃗ ) \vec a=2\vec\omega\times\vec v+\vec\omega\times(\vec\omega\times\vec r) a =2ω ×v +ω ×(ω ×r )下面就用两种方法推导。

第一种方法便于理解,但过程较为繁琐,主要运用高等数学的求导来实现。

O O O为原点, O A OA OA x x x轴,在 S S S系中建立平面直角坐标系。
P P P点在 S ′ S' S系的坐标为 ( r + v x t , v y t ) (r+v_xt,v_yt) (r+vxt,vyt),故 P P P点在 S S S系的坐标为 P ( ( r + v x t ) cos ⁡ ω t − v y t sin ⁡ ω t , ( r + v x t ) sin ⁡ ω t + v y t cos ⁡ ω t ) P((r+v_xt)\cos{\omega t}-v_yt\sin{\omega t},(r+v_xt)\sin{\omega t}+v_yt\cos{\omega t}) P((r+vxt)cosωtvytsinωt,(r+vxt)sinωt+v

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值