NOTES
1.Binomial distribution
We do trial E n times, if the result can be of type A with probablity p or of type not A with probablity 1-p, we call this trail n-times Bernoulli trial.
There are only two types of outcome in this trial. Using X records the times of appearance of A. The X can be 0, 1, 2, … , n. Here, X is binormial distribution.
P { X = k } = ( n k ) p k ( 1 − p ) 1 − k = n ! ( n − k ) ! k ! p k ( 1 − p ) 1 − k P\{X = k\} = \begin{pmatrix} n \\ k \end{pmatrix}p^k(1-p)^{1-k}=\frac{n!}{(n-k)!k!}p^k(1-p)^{1-k} P{
X=k}=(nk)pk(1−p)1−k=(n−k)!k!n!pk(1−p)1−k
2.Poisson distribution
If p < 01 and np< 5 , the binomial distribution can be approximated by the Poisson distribution:
lim n → ∞ ( n k ) p k ( 1 − p ) 1 −