BIOS14:The binomial and normal distributions(二项分布与正态分布) using R

这篇笔记介绍了R语言中二项分布、泊松分布和正态分布的相关知识。二项分布适用于只有两种可能结果的伯努利试验,其概率质量函数被详细阐述。当np<5时,可以使用泊松分布近似二项分布。正态分布的密度函数和标准化转换也被讨论。中央极限定理指出,即使原始分布非正态,样本均值的分布也会趋向于正态分布。在练习部分,通过具体例子展示了二项分布的探索、中央极限定理的应用,以及如何进行二项检验、评估正态性,并使用正式测试检查数据是否符合正态分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

NOTES

1.Binomial distribution

We do trial E n times, if the result can be of type A with probablity p or of type not A with probablity 1-p, we call this trail n-times Bernoulli trial.
There are only two types of outcome in this trial. Using X records the times of appearance of A. The X can be 0, 1, 2, … , n. Here, X is binormial distribution.
P { X = k } = ( n k ) p k ( 1 − p ) 1 − k = n ! ( n − k ) ! k ! p k ( 1 − p ) 1 − k P\{X = k\} = \begin{pmatrix} n \\ k \end{pmatrix}p^k(1-p)^{1-k}=\frac{n!}{(n-k)!k!}p^k(1-p)^{1-k} P{ X=k}=(nk)pk(1p)1k=(nk)!k!n!pk(1p)1k

2.Poisson distribution

If p < 01 and np< 5 , the binomial distribution can be approximated by the Poisson distribution:
lim ⁡ n → ∞ ( n k ) p k ( 1 − p ) 1 −

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值