概率机器人笔记(6):机器人感知模型

1.前言

由于所有的传感器都是带有噪声的,将机器人感知模型也就是测量模型同样用条件概率分布 p ( z t ∣ x t , m ) p(z_t|x_t,m) p(ztxt,m)进行表示已经成为约定俗成或者说水到渠成的事情了。其中 x t x_t xt代表了机器人的位姿, z t z_t zt代表传感器的测量值, m m m代表环境地图。

2.光束模型(Beam Models)

(1)四种测量模型分布

测量噪声 p h i t p_{hit} phit
在这里插入图片描述测量噪声被认为是一个高斯分布,由下面公式给出: p h i t ( z t k ∣ x t , m ) = { η N ( z t k ; z t k ∗ , σ h i t 2 ) , 0 ≤ z t k ∗ ≤ z m a x 0 , 其 他 p_{hit}(z_t^k|x_t,m)=\begin{cases}\eta N(z_t^k;z_t^{k*},\sigma_{hit}^2),0\leq z_t^{k*}\leq z_{max}\\ 0,其他\end{cases} phit(ztkxt,m)={ηN(ztk;ztk,σhit2),0ztkzmax0,其中, z t k ∗ z_t^{k*} ztk是传感器测量的均值,代表“真实”的距离。 N ( z t k ; z t k ∗ , σ h i t 2 ) N(z_t^k;z_t^{k*},\sigma_{hit}^2) N(ztk;ztk,σhit2)是以 z t k ∗ z_t^{k*} ztk为均值, σ h i t 2 \sigma_{hit}^2 σhit2为方差的高斯分布,归一化因子 η = ( ∫ 0 m a x N ( z t k ; z t k ∗ , σ h i t 2 ) d z t k ) − 1 \eta=(\int_0^{max}N(z_t^k;z_t^{k*},\sigma_{hit}^2)dz_t^k)^{-1} η=(0maxN(ztk;ztk,σhit2)dztk)1
意外障碍物
意外障碍物的出现使得传感器对环境的测量失真,将意外障碍物作为传感器从误差是一种比较好的处理方式,当有障碍物时,传感器对目标的检测的可能性随着距离的增加而减小,换句话说,当传感器距离环境目标越近的时候,被障碍物阻挡的概率越低,检测成功的可能性就越大,因此用指数分布来描述这个误差。
在这里插入图片描述 p s h o r t ( z t k ∣ x t , m ) = { η λ s h o r t e − λ s h o r t z t k   0 ≤ z t k ≤ z t k ∗ 0 , 其 他 p_{short}(z_t^k|x_t,m)=\begin{cases}\eta \lambda_{short}e^{-\lambda_{short}z_t^k} \,0\leq z_t^k\leq z_t^{k*}\\0,其他\end{cases} pshort(ztkxt,m)={ηλshorteλshortztk0ztkztk0,其中, λ s h o r t \lambda_{short} λshort是测量模型的固有参数,归一化因子 η = 1 1 − e − λ s h o r t z t k ∗ \eta=\frac{1}{1-e^{-\lambda_{short}z_t^{k*}}} η=1eλshortztk1
测量失败
传感器由于发生镜面反射或者超过最大测量距离导致检测失败,结果就是返回的测量值为最大测量距离。将 p m a x p_{max} pmax用一个很窄的以 z m a x z_{max} zmax为中心的均匀分布来模拟概率密度函数。
在这里插入图片描述
p m a x ( z t k ∣ x t , m ) = { 1 , z = z m a x 0 , 其 他 p_{max}(z_t^k|x_t,m)=\begin{cases}1,z=z_{max}\\0,其他\end{cases} pmax(ztkxt,m)={1,z=zmax0,
随机测量
用一个均匀分布来描述传感器的随机测量,即在传感器的测量范围内,任何一个点都是有可能被测量到的,而且概率是一样的,用来解释无法解释的传感器测量值。
在这里插入图片描述
p r a n d ( z t k ∣ x t , m ) = { 1 z m a x , 0 ≤ z t k ≤ z m a x 0 , 其 他 p_{rand}(z_t^k|x_t,m)=\begin{cases}\frac{1}{z_{max}},0\leq z_t^k\leq z_{max}\\0,其他\end{cases} prand(ztkxt,m)={zmax1,0ztkzmax0,

(2)混合分布

通过四个加权参数 z h i t , z s h o r t , z m a x , z r a n d z_{hit},z_{short},z_{max},z_{rand} zhit,zshort,zmax,zrand将上述四个误差模型进行加权: p ( z t k ∣ x t , m ) = [ z h i t z s h o r t z m a x z r a n d ] ⋅ [ p h i t ( z t k ∣ x t , m ) p s h o r t ( z t k ∣ x t , m ) p m a x ( z t k ∣ x t , m ) p r a n d ( z t k ∣ x t , m ) ] p(z_t^k|x_t,m)=\begin{bmatrix}z_{hit}\\z_{short}\\z_{max}\\z_{rand}\end{bmatrix}·\begin{bmatrix}p_{hit}(z_t^k|x_t,m)\\p_{short}(z_t^k|x_t,m)\\p_{max}(z_t^k|x_t,m)\\p_{rand}(z_t^k|x_t,m)\end{bmatrix} p(ztkxt,m)=zhitzshortzmaxzrandphit(ztkxt,m)pshort(ztkxt,m)pmax(ztkxt,m)prand(ztkxt,m)
在这里插入图片描述

(3)程序流程

在这里插入图片描述
由于光束模型缺乏光滑的过渡,在复杂的环境中的效果不是很好,因此这里仅仅当做了解,不再做深入的推导和补充,后续用到的话再回来补上。

3.似然场模型

似然场模型类似于对环境进行高斯平滑,从而避免光束模型的缺点。其他类似于光束模型。

(1)测量模型分布

测量噪声
p h i t ( z t k ∣ x t , m ) = ε σ h i t ( d i s t ) p_{hit}(z_t^k|x_t,m)=\varepsilon_{\sigma_{hit}}(dist) phit(ztkxt,m)=εσhit(dist)其中, d i s t dist dist是传感器坐标 ( x z t k , y z t k ) T (x_{z_t^k},y_{z_t^k})^T (xztk,yztk)T与地图上最近点之间的距离。
在这里插入图片描述
测量失败随机测量前面已经叙述,这里不再重复。

(2)混合分布

似然场模型的混合分布也是上述三种测量模型分布的叠加: p ( z t k ∣ x t , m ) = z h i t p h i t + z r a n d p r a n d + z m a x p m a x p(z_t^k|x_t,m)=z_{hit}p_{hit}+z_{rand}p_{rand}+z_{max}p_{max} p(ztkxt,m)=zhitphit+zrandprand+zmaxpmax
在这里插入图片描述

(3)程序流程

在这里插入图片描述
4:如果测量值达到了最大值,舍去
5,6:将障碍物在传感器中的局部坐标转换到 x − y x-y xy全局坐标
7:计算 x − y x-y xy空间中与最近障碍物之间的距离
8:将三种分布进行混合,其中, p r o b ( d i s t , σ h i t ) prob(dist,\sigma_{hit}) prob(dist,σhit)计算以0为中心,标准差为 σ h i t \sigma_{hit} σhit的高斯分布关于 d i s t dist dist的概率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值