生成系列论文:基于diffusion的3d图像的生成:Novel View Synthesis with Diffusion Models(一)

该研究针对直接生成3D点云的挑战,提出了一种通过连续生成不同视角的2D图像来构建3D视图的方法。现有的模型往往只能从一张图生成另一张相关图,而新方法通过输入多个视角信息,更有效地控制了3D对象的视图合成。作者在扩散模型的基础上,通过控制信息的输入(如视图和对应姿态角),逐步生成连续的图像视角,以实现3D场景的多角度表示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Novel View Synthesis with Diffusion Models
文章的原地址为:https://arxiv.org/abs/2210.04628

想要直接生成一个3d图像比较困难

作者的研究动机主要是,在直接生成一个完整的3d空间点云的时候较为困难,于是作者想要转而寻求其他的方法,作者最终采用的方法是不断地生成3d图像的各个角度的视图,来完成最终的生成。也就是本文的最终目的是生成一组3d图像的视图。

现有模型存在的问题

现有的模型都是直接从一个图片生成到另外一个图片,缺少一个整体的生成。我个人理解这里是这样子的,原始的图片到图片的生成都是生成两个有关系的图片,并不能很好的保证生成的是同一个物体的两个视图,因此很难更有针对性的应用在3d视图的生成。所以作者才要开发这个模型来解决这个问题。

作者采用的结构

作者这里原有的扩散模型没有太大的区别,主要是控制信息的不同。

作者怎么输入控制信息

1.第一次输入(A视图,A视图对应的姿态角)输出(B视图,B视图对应的姿态角)
2.第二次输入(A视图,A视图对应的姿态角,B视图,B视图对应的姿态角)输出(C视图,C视图对应的姿态角)这次有两图片控制的,作者并没有融合他们,而是每次随机选择一个让其对生成进行控制。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CUHK-SZ-relu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值