《论文阅读》OccuSeg: Occupancy-Aware 3D Instance Segmentation

提出一种基于占用感知的三维实例分割方法,通过预测实例占用的体素数量来指导聚类过程,有效避免过度分割。利用3D-Unet提取特征,并通过多任务框架学习语义分割、特征和空间嵌入以及占用回归。

留个笔记自用

OccuSeg: Occupancy-Aware 3D Instance Segmentation

做什么

Instance segmentation实例分割
在这里插入图片描述
目标检测( Object detection)不仅需要提供图像中物体的类别,还需要提供物体的位置(bounding box)。语义分割( Semantic segmentation)需要预测出输入图像的每一个像素点属于哪一类的标签。实例分割( instance segmentation)在语义分割的基础上,还需要区分出同一类不同的个体。
在这里插入图片描述
这里就是从2D图像的分割转移到了点云上的分割,无非就是在位置信息上多了一维

做了什么

在这里插入图片描述
定义一个"3D occupancy size"定义为每个实例占用的体素数量。在此基础上,提出了一种占用感知的三维实例分割方案。聚类方案受益于预测占用大小和聚类占用大小之间的可靠比较,这有助于正确聚类硬样本并避免过度分割。其实也就是根据定义的size来进一步约束聚类

怎么做

在这里插入图片描述
首先是整个结构的整体流程,输入是一张以2cm的分辨率而voxel化的3D彩色场景,输入至3D-Unet进行feature extract。然后学习后的特征被转发到特定任务的头部,以学习每个输入voxel的不同表示,包括语义分割,其目的是分配类别标签、特征和空间嵌入,以及占用回归,最后,执行基于图的占用感知聚类方案,为每个voxel生成3D对象实例标签
整体结构以这样的方式呈现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值