留个笔记自用
OccuSeg: Occupancy-Aware 3D Instance Segmentation
做什么
Instance segmentation实例分割

目标检测( Object detection)不仅需要提供图像中物体的类别,还需要提供物体的位置(bounding box)。语义分割( Semantic segmentation)需要预测出输入图像的每一个像素点属于哪一类的标签。实例分割( instance segmentation)在语义分割的基础上,还需要区分出同一类不同的个体。

这里就是从2D图像的分割转移到了点云上的分割,无非就是在位置信息上多了一维
做了什么

定义一个"3D occupancy size"定义为每个实例占用的体素数量。在此基础上,提出了一种占用感知的三维实例分割方案。聚类方案受益于预测占用大小和聚类占用大小之间的可靠比较,这有助于正确聚类硬样本并避免过度分割。其实也就是根据定义的size来进一步约束聚类
怎么做

首先是整个结构的整体流程,输入是一张以2cm的分辨率而voxel化的3D彩色场景,输入至3D-Unet进行feature extract。然后学习后的特征被转发到特定任务的头部,以学习每个输入voxel的不同表示,包括语义分割,其目的是分配类别标签、特征和空间嵌入,以及占用回归,最后,执行基于图的占用感知聚类方案,为每个voxel生成3D对象实例标签
整体结构以这样的方式呈现

提出一种基于占用感知的三维实例分割方法,通过预测实例占用的体素数量来指导聚类过程,有效避免过度分割。利用3D-Unet提取特征,并通过多任务框架学习语义分割、特征和空间嵌入以及占用回归。
最低0.47元/天 解锁文章
1407

被折叠的 条评论
为什么被折叠?



