GNSS/INS集成通常有两种主要架构:松组合(Loosely Coupled)和紧组合(Tightly Coupled)。它们的区别主要在于数据融合方式、计算复杂度、性能以及适用场景。以下是详细分析:
1. 松组合(Loosely Coupled Integration)
特点
- 独立解算:GNSS和INS分别进行独立解算。
- GNSS输出位置和速度解。
- INS通过惯性测量单元(IMU)计算自身的位置、速度和姿态。
- 数据融合:通过滤波器(如卡尔曼滤波器)融合GNSS提供的位置和速度解,以及INS的输出。
架构
- GNSS模块独立解算位置和速度。
- INS通过IMU测量加速度和角速度,并结合导航解算得出姿态、速度和位置。
- 滤波器将两者的解算结果进行融合,更新INS的误差。
优点
- 实现简单:GNSS和INS独立工作,系统架构清晰,易于实现。
- 可靠性高:GNSS数据可直接用于导航,即使融合算法失败,GNSS仍然能提供有效的导航信息。
- 适用场景广泛:适合卫星信号可用性高的环境。
缺点
- 对GNSS信号依赖较大:当卫星信号受阻(如遮挡或干扰)时,GNSS无法提供有效位置解,导致INS无法被有效校正。
- 精度受限:数据融合的时效性不高,INS误差积累较快。
2. 紧组合(Tightly Coupled Integration)
特点
- 原始观测值级别融合:直接使用GNSS原始观测值(伪距、载波相位、Doppler速度)和INS输出进行联合解算。
- 深度耦合:GNSS与INS的解算过程互相关联,形成一个整体系统。
架构
- GNSS提供伪距、载波相位或Doppler速度观测值。
- INS提供预测的位置、速度和姿态作为对GNSS观测值的先验信息。
- 滤波器(如扩展卡尔曼滤波器、粒子滤波器)对两者的观测值进行联合处理。
优点
- 信号容错性强:当卫星数量不足(如少于4颗)时,仍可通过INS提供的先验信息解算位置。
- 精度高:直接处理原始观测值,误差建模更加精细,能显著减小INS误差累积。
- 抗干扰性强:在复杂环境(如城市峡谷、森林)中表现优于松组合。
缺点
- 实现复杂:需要处理原始观测值,涉及GNSS和INS的深度耦合和精细建模。
- 计算量大:观测值处理和联合滤波需要更多计算资源。
- 故障影响大:GNSS和INS深度耦合,任一部分故障可能导致整个系统失效。
3. 对比总结
特性 | 松组合(Loosely Coupled) | 紧组合(Tightly Coupled) |
---|---|---|
融合层次 | 后处理结果(位置、速度) | 原始观测值(伪距、载波相位、Doppler速度等) |
实现复杂度 | 简单 | 高 |
计算复杂度 | 低 | 高 |
抗卫星信号遮挡能力 | 较差(至少需要4颗卫星) | 较强(少于4颗卫星仍可工作) |
精度 | 中等 | 高 |
适用场景 | 卫星信号良好、环境简单 | 信号复杂、遮挡严重的环境 |
4. 适用场景
-
松组合:
- 普通导航场景(如开阔地带、卫星信号良好)。
- 对实时性要求低,且计算资源有限的设备。
-
紧组合:
- 复杂环境(如城市峡谷、森林、高动态飞行器)。
- 高精度定位需求(如自动驾驶、精密导航)。
- 卫星信号可能受干扰或遮挡的场景。
5. 总结建议
- 如果系统开发要求简单且适合开阔环境,选择松组合。
- 如果需要高精度定位或需要应对信号复杂的环境,选择紧组合。