此处以pytorch官网的一个小例子来展开介绍:
单机多卡的GPU并行加速相对来说比较简单,相比普通的单机单卡训练只需要加几行代码就可以解决,下面看具体代码:
1.导入包并定义相应的网络模型超参数
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
# Parameters and DataLoaders
input_size = 5
output_size = 2
batch_size = 30
data_size = 100
2.加上cuda设备有无的这句经典测试语句
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
3.定义一个数据集类(可根据自己的数据集进行调整)
class RandomDataset(Dataset):
def __init__(self, size, length):
self.len = length
self.data = torch.randn(length, size)
def __getitem__(self, index):
return self.data[index]
def __len__(self):
return self.len
rand_loader = DataLoader(dataset=RandomDataset(input_size, data_size),
batch_size=batch_size, shuffle=True)
4.构建网络模型,此处构建的模型只是一个demo,只有一个全连接层,可根据需要调整
class Model(nn.Module):
# Our model
def __init__(self, input_size, output_size):
super(Model, self).__init__()
self.fc = nn.Linear(input_size, output_size)
def forward(self, input):
output = self.fc(input)
print("\tIn Model: input size", input.size(),
"output size", output.size())
return output
5.这是整篇教程的重点, 首先我们实例化一个模型,然后测试这台机器上有几个cuda设备,如果大于1个,打印出来数量,然后通过最后的model.to(device)语句将实例化好的模型放到各个cuda设备上。
model = Model(input_size, output_size)
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
model = nn.DataParallel(model)
model.to(device)
6. 查看input与output的size
for data in rand_loader:
input = data.to(device)
output = model(input)
print("Outside: input size", input.size(),
"output_size", output.size())
更多资源可查看: