压缩-激励的宽残差网络在图像分类中的应用(ICIP 2019)
SQUEEZE-AND-EXCITATION WIDE RESIDUAL NETWORKS IN IMAGE CLASSIFICATION
在昨天的论文中,DAM模块中右侧分支就是基于本文所提出的SE-block,今天来了解一下这个模块。
1. INTRODUCTION
宽残差网络(WRNs:Wide residual networks)表明,与增加残差网络深度相比,拓宽残差块(如果处理得当)可以更有效地提高残差网络的性能。
SE-WRNs可以增强信息通道并抑制不太有用的通道,SE-WRNs块是计算轻量级的,只略微增加模型复杂度和计算量。
SE-blocks中的全局平均池化会导致信息的丢失,因此我们提出了一个r(残差)SE-blocks块,将在后面的章节中介绍,我们的rSE-blocks在计算上也是轻量级的。
综上所述,我们的工作贡献如下:
(1 )我们提出了SE-WRNs。与WRNs仅仅增加通道数量不同,SE-WRNs增加了有效通道。为了避免过拟合,提出了一种带有dropout的SE-block块。
(2) 然后,我们提出了利用通道间关系提高图像分类性能的SE-WRNs-GVP(全局平均池化)算法。
(3) 为了避免SE-block中的信息丢失,提出了一种残差SE-block。
2. PROPOSED METHODS
2.1 总体框架
WRN已经证明基本残差结构的3 × 3卷积层中的每一层都是重要的,因此我们采用在WRN中的卷积类型。WRN-n