CV——dy83 接昨天的论文中DAM模块:压缩-激励的宽残差网络在图像分类中的应用

文章介绍了SE-WRN(Squeeze-and-ExcitationWiderResidualNetworks),这是一种通过增强重要通道和抑制不重要通道来提升图像分类性能的技术。SE-blocks通过全局平均池化处理通道信息,而rSE-blocks则解决了信息丢失的问题。在CIFAR数据集上的实验显示,这种方法能有效提高分类准确率,同时仅轻微增加模型复杂度。

SQUEEZE-AND-EXCITATION WIDE RESIDUAL NETWORKS IN IMAGE CLASSIFICATION

image-20230305103420138

在昨天的论文中,DAM模块中右侧分支就是基于本文所提出的SE-block,今天来了解一下这个模块。

1. INTRODUCTION

宽残差网络(WRNs:Wide residual networks)表明,与增加残差网络深度相比,拓宽残差块(如果处理得当)可以更有效地提高残差网络的性能。

SE-WRNs可以增强信息通道并抑制不太有用的通道,SE-WRNs块是计算轻量级的,只略微增加模型复杂度和计算量。

SE-blocks中的全局平均池化会导致信息的丢失,因此我们提出了一个r(残差)SE-blocks块,将在后面的章节中介绍,我们的rSE-blocks在计算上也是轻量级的。

综上所述,我们的工作贡献如下

(1 )我们提出了SE-WRNs。与WRNs仅仅增加通道数量不同,SE-WRNs增加了有效通道。为了避免过拟合,提出了一种带有dropout的SE-block块。

(2) 然后,我们提出了利用通道间关系提高图像分类性能的SE-WRNs-GVP(全局平均池化)算法。

(3) 为了避免SE-block中的信息丢失,提出了一种残差SE-block。

2. PROPOSED METHODS

2.1 总体框架

WRN已经证明基本残差结构的3 × 3卷积层中的每一层都是重要的,因此我们采用在WRN中的卷积类型。WRN-n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值