为什么AI不能取代开发者:AI在代码中的真正限制

虽然我坚信Copilot无法真正替代人,但是以后面试算法题能不能不要再考了?代码辅助AI用的我都快忘记快排怎么写了 QAQ

AI写不了比开发者更好的代码

在AI技术日益成熟并逐渐成为开发者们的新宠儿的同时,有一个关键的事实我们需要铭记:AI编写的代码并不能超越人类开发者。尽管像GitHub Copilot和ChatGPT这样的AI编码工具为我们带来了便利和效率,但它们并不能完全取代人类。

本文将讨论为什么AI无法替代开发者,同时探讨为什么它仍然是一个宝贵的助手,以及我们如何利用AI来提升我们的开发效率。灵感来自最近的工作,包括苹果的论文《GSM-Symbolic: Understanding the Limitations of Mathematical Reasoning in Large Language Models》,我们将深入探讨AI在处理复杂开发任务时的技术局限性。

AI在编程时的限制

AI在软件开发自动化方面的进步确实令人瞩目,它能够生成模板代码、协助文档编写,甚至提供常见错误的解决方案,这些都极大地节省了开发者的时间和精力。然而,我们必须认识到,AI并非万能,它无法处理开发者能够完成的每一项任务。

AI的一个显著局限性在于,它无法通过推理解决复杂问题。AI工具在处理简单任务时得心应手,但当问题变得更加复杂,尤其是需要理解项目的特定背景和细节时,人类开发者就显现出了他们的优势。

比如你让AI把你项目从JDK8升级到21试试?ƪ(˘⌣˘)ʃ

我尝试过不少AI编程助手,像是GitHub Copilot、Gemini Code Assist和Codeium这些。不得不说,它们在很多情况下都挺给力的。但我也遇到过AI无法达到预期的情况。比如,当我指望AI帮我修bug时,有时候它不仅没修好,反而让问题更复杂了。而且,调试AI写的代码,可比调试人类写的、考虑了各种项目细节的代码难多了。

AI一旦出错,后果可能挺严重的。它不像我们人类,能从错误中学习。AI经常忽略代码库里的重要背景,甚至是些小细节。

还有,AI在理解和推理方面,能力还是有限的。尽管它们能根据训练数据给出答案,但在处理复杂任务或创新方面,还是差了点火候。这一点,很多开发者可能还没意识到,尤其是那些期待AI能像高级工程师或创意伙伴一样表现的时候。

GSM-Symbolic论文: 强调AI推理的局限性

在《GSM-Symbolic: Understanding the Limitations of Mathematical Reasoning in Large Language Models》论文里,苹果公司的研究人员
指出,AI在推理能力上还是有短板的。他们发现,尽管AI模型能处理模式和给出基于训练数据的答案,但在真正的推理上,AI还是有点力不从心。AI其实并不真正“懂”问题的背景,它只是根据以前见过的模式来预测。

这篇论文提到,尽管大型语言模型(LLMs)有了不少进步,但这些模型可能永远做不到像人类那样的真正推理。比如,给LLMs一些简单的数学任务,它们可能表现得挺准的。但一旦问题有点变化(比如改个名字、数字,或者加点无关的细节),模型的准确性就会大幅下降。

在编程任务上,这个现象尤其明显。AI在生成样板代码或者提供已知问题的解决方案这些简单任务上,帮忙挺大。但碰到需要理解、创新和背景知识的复杂、多方面任务时,AI就有点吃力了——而这些挑战,真正的开发者每天都在面对。

GSM-Symbolic论文摘要
论文表明,LLMs依赖于模式识别而不是真正的推理。虽然AI取得了令人印象深刻的进步,但在能够与人类开发者的推理和问题解决能力相匹配之前,还有很长的路要走。

为什么数学推理是核心挑战
对于需要细微推理的任务——如调试复杂代码或设计新功能——AI无法像人类那样推理,这使得它成为一个不可靠的工具。它无法理解为什么某些解决方案可能比其他解决方案更适合项目的背景。

对编程任务的启示:复杂性、背景和正确性
AI擅长解决具有结构化数据的可预测问题,但当涉及到需要创造力和复杂逻辑的任务时,它就会遇到困难。论文建议,LLMs目前最适合查询信息和总结文档等任务,而不是处理需要创造力和背景知识的复杂编程挑战。

但是讲道理,苹果的论文里面说的仅仅是,鉴于目前的设计,AI缺乏真正的推理能力,如果没有重大突破,它不会实现。所以,我个人觉得取代人类仍然是一个遥远的可能性,人工智能有朝一日取代人类编程也不是没可能,就像几年前我还觉得ChatGPT这种对话软件不可能存在一样。

编程时如何高效利用AI

AI确实是个对开发者很有帮助的工具,但关键是要用对地方,避免不必要的挫败感和错误。这里有一些使用AI的小技巧:

  1. 把AI当助手,别当替代品

    AI就像是你的工作伙伴,但它不能完全取代你作为一个开发者的专业知识、创意和解决问题的能力。你可以把AI想象成一个超强实习生,需要你的指导、清晰的指令和错误纠正。

  2. 专注小而具体的任务

    AI在处理小而具体的任务时最给力。别让它从零开始构建整个应用程序——把任务拆分成小块,然后让AI帮忙写代码的各个部分。

  3. 给AI清晰的提示

    AI的表现很大程度上取决于你给它的提示。如果你问的问题不精确或者没提供足够的背景信息,AI给出的答案可能就不准确或者不相关。所以在请求帮助时,要尽量清晰、具体。

  4. 用AI处理重复性任务

    AI特别适合做那些重复性、耗时的任务,比如写模板代码或者检查简单的错误。这样你可以省下时间和精力,去做那些需要创意和逻辑的开发工作。

  5. 知道什么时候该自己动手

    如果AI在解决问题上卡住了,别硬逼它,指望它能突然开窍。要懂得什么时候该自己接手,或者找其他人类开发者帮忙。

常见误区以及如何规避

AI确实是个强大的工具,但过度依赖它确实是个容易掉进去的陷阱。这里有一些开发者在使用AI时常见的错误,以及如何避免这些错误:

  1. 过度依赖AI解决问题

    有些开发者,尤其是经验不足的,可能会过分依赖AI来“解决”问题,而不去深入理解问题的本质。这样做其实挺危险的,因为它不利于培养批判性思维和解决问题的能力。解决方法:把AI当做一个学习工具,但同时要努力自己去理解和解决问题。

  2. 期望AI写出完美代码

    AI远非完美。它可能会出错,提供不太理想的解决方案,或者生成难以维护的代码。解决方法:始终彻底审查和测试AI生成的代码。记住,AI提供的是起点,不是终点。

  3. 未提供足够背景信息

    AI需要清晰的指令和足够的背景信息才能给出准确的结果。解决方法:在请求帮助时,要尽量具体和明确。如果AI不理解问题,它就没办法提供有用的解决方案。

  4. 将AI视为高级开发者

    AI工具有时候看起来好像什么都知道,但它们在处理复杂的编码任务或提供创造性解决方案方面,还是有局限的。解决方法:把AI当做一个初级开发者,需要你的指导和帮助。

总结: 目前AI写不了比人更好的代码

AI确实是个很棒的助手,但它还不能完全取代人类开发者的创造力、解决问题的能力和推理能力。AI在完成代码生成和错误修复这样的简单任务上很有帮助,但在理解复杂问题、处理上下文和做出创造性决策方面,它还有局限性。开发者应该把AI当作提升工作效率的工具,而不是替代自己的技能。AI更像是一种帮手——它可以帮助开发者更高效地写出更好的代码,但它还不能像人类那样思考、推理或创新。优秀软件开发的核心还是在于成长、学习和创造力,在这些方面,AI还有很长的路要走。

如果AI能写大部分甚至全部的代码,你可能就不会创造出什么真正新颖或令人印象深刻的东西了。试想一下,只靠AI从零开始创造一个像蓝天这样的事物,或者建立一个像微信这样的完整平台。然后要求AI确保性能超过人类开发者能达到的水平。很快你就会明白,为什么公司还是会雇佣开发者,而不仅仅依赖AI,尽管AI可能成本更低。

真正的创新和突破目前还是来自人类。这并不是说AI不能帮助处理复杂的代码库——它确实可以。但要说它能完全取代开发者?现在还为时尚早。

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

征途黯然.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值