从GDC下载数据集、svs无损转png

从GDC下载数据集参考:

(8条消息) TCGA数据下载教程:使用官方gdc-client软件下载_Mr番茄蛋的博客-CSDN博客_gdc-clienthttps://blog.csdn.net/qq_35203425/article/details/80882988?ops_request_misc=&request_id=&biz_id=102&utm_term=%E4%BB%8Egdc%E6%95%B0%E6%8D%AE%E5%BA%93%E4%B8%AD%E4%B8%8B%E8%BD%BD%E6%95%B0%E6%8D%AE&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduweb~default-0-80882988.142%5Ev5%5Epc_search_result_control_group,157%5Ev4%5Econtrol&spm=1018.2226.3001.4187TCGA官网:The Cancer Genome Atlas Program - National Cancer Institute 

 

 接下来选择想要的加入购物车:我选的open,svs格式的

 

 

 

 

如何安装Data Transfer Tool,也就是gdc-client这个接口软件
Data Transfer Tool网址:

GDC Data Transfer Tool | NCI Genomic Data Commonshttps://gdc.cancer.gov/access-data/gdc-data-transfer-tool

打开cmd:

E:\gdc\gdc-client.exe download -m E:\gdc\gdc_manifest_20220407_022532.txt

在刚刚的目录下找到下载的文件:

 做好分类:

 svs转png:

先装上openslide库

链接:Downloading OpenSlide

 

把上面三个文件的内容(不要文件夹)copy到Anaconda虚拟环境的根目录中,如下图所示 

 打开虚拟环境终端

 

 它就变绿啦

 

接下来将svs无损转png:


import openslide
import numpy as np
import scipy.misc
# import cv2
import numpy as np
import matplotlib.pyplot as plt
import os
import PIL.Image
test = openslide.open_slide('./dataset/LUAD/9/9.svs')
 
img = np.array(test.read_region((0, 0), 0, test.dimensions))
# scipy.misc.imsave('G:/data/123/test.tif', img)

output_path = r'./output/LUAD'
if not os.path.exists(output_path):
    os.mkdir(output_path)
# inputlist = np.array(readimagearray())
# imgfact = np.array(inputlist[int(fact*10)+i%3])
# predictimg = np.array(inputlist[int(fact*10)])

# plt.axis('off')
# plt.imshow(img,cmap="gray")
# plt.savefig('./means_Output/', bbox_inches='tight', pad_inches=0)
PIL.Image.fromarray(img).save('./output/LUAD/9.png')

把大图裁切成小图:  (裁剪见下一篇博客)

 

 LUAD和LUSC两类数据各100张,放入vision transformer中做分类训练:

 最终结果验证集acc:0.975左右

预测:

 

 

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值