第一型曲线和曲面积分总结

第一型曲线积分
  • 参数方程表达 x = x ( t ) , y = y ( t ) , z = z ( t ) x=x(t),y=y(t),z=z(t) x=x(t),y=y(t),z=z(t)

d l = x ′ ( t ) 2 + y ′ ( t ) 2 + z ′ ( t ) 2 d t dl=\sqrt{x'(t)^2+y'(t)^2+z'(t)^2}dt dl=x(t)2+y(t)2+z(t)2 dt

  • 特殊参数方程:

    • 极坐标

    x = r ( t ) cos ⁡ θ ( t ) , y = r ( t ) sin ⁡ θ ( t ) d l = ( d r ) 2 + ( r d θ ) 2 = r ′ 2 + r 2 θ ′ 2 d t x=r(t)\cos \theta(t),y=r(t)\sin \theta(t)\\ dl=\sqrt{(dr)^2+(rd\theta)^2}\\ =\sqrt{r'^2+r^2\theta'^2}dt x=r(t)cosθ(t),y=r(t)sinθ(t)dl=(dr)2+(rdθ)2 =r2+r2θ2 dt

    • 柱坐标

    x = r ( t ) cos ⁡ θ ( t ) y = r ( t ) sin ⁡ θ ( t ) z = z ( t ) d l = ( d r ) 2 + ( r d θ ) 2 + ( d z ) 2 x=r(t)\cos \theta(t)\\ y=r(t)\sin \theta(t)\\ z=z(t)\\ dl=\sqrt{(dr)^2+(rd\theta)^2+(dz)^2} x=r(t)cosθ(t)y=r(t)sinθ(t)z=z(t)dl=(dr)2+(rdθ)2+(dz)2

    • 球坐标

    x = r ( t ) sin ⁡ θ ( t ) cos ⁡ φ ( t ) y = r ( t ) sin ⁡ θ ( t ) sin ⁡ φ ( t ) z = r ( t ) cos ⁡ θ ( t ) d l = ( d r ) 2 + ( r sin ⁡ θ d φ ) 2 + ( r d θ ) 2 x=r(t)\sin \theta(t)\cos \varphi(t)\\ y=r(t)\sin \theta(t)\sin \varphi(t)\\ z=r(t)\cos \theta(t)\\ dl=\sqrt{(dr)^2+(r\sin \theta d\varphi)^2+(rd\theta)^2} x=r(t)sinθ(t)cosφ(t)y=r(t)sinθ(t)sinφ(t)z=r(t)cosθ(t)dl=(dr)2+(rsinθdφ)2+(rdθ)2

    • 上式的计算方法:

    ( x y z ) = ( r sin ⁡ θ cos ⁡ φ r sin ⁡ θ sin ⁡ φ r cos ⁡ θ ) 分 别 对 r , φ , θ 求 导 得 ( sin ⁡ θ cos ⁡ φ sin ⁡ θ sin ⁡ φ cos ⁡ θ ) , ( r sin ⁡ θ ⋅ ( − sin ⁡ φ ) r sin ⁡ θ cos ⁡ φ 0 ) , ( r cos ⁡ θ cos ⁡ φ r cos ⁡ θ sin ⁡ φ − r   sin ⁡ θ ) 将 上 面 三 个 向 量 单 位 化 后 的 向 量 记 作 e r , e φ , e θ , 看 作 d r , d φ , d θ , 那 么 求 导 得 到 的 三 个 向 量 就 是 e r , r sin ⁡ θ e φ , r e θ , 对 应 了 三 个 正 交 的 坐 标 方 向 的 增 量 d l = ( d r ) 2 + ( r sin ⁡ θ d φ ) 2 + ( d θ ) 2 \begin{pmatrix} x\\ y\\ z\\ \end{pmatrix} = \begin{pmatrix} r\sin \theta \cos\varphi\\ r\sin \theta \sin\varphi\\ r\cos \theta \end{pmatrix}分别对r,\varphi,\theta求导得\\ \begin{pmatrix} \sin\theta\cos \varphi\\ \sin\theta\sin \varphi\\ \cos\theta \end{pmatrix}, \begin{pmatrix} r\sin\theta\cdot (-\sin\varphi)\\ r\sin \theta\cos \varphi\\ 0 \end{pmatrix},\begin{pmatrix} r\cos \theta \cos \varphi\\ r\cos \theta \sin \varphi\\ -r\ \sin\theta \end{pmatrix}\\ 将上面三个向量单位化后的向量记作e_r,e_\varphi,e_\theta,看作dr,d\varphi,d\theta,\\ 那么求导得到的三个向量就是e_r,r\sin\theta e_\varphi,re_\theta,对应了三个正交的坐标方向的增量\\ dl=\sqrt{(dr)^2+(r\sin \theta d\varphi)^2+(d\theta)^2} xyz=rsinθcosφrsinθsinφrcosθr,φ,θsinθcosφsinθsinφcosθ,rsinθ(sinφ)rsinθcosφ0,rcosθcosφrcosθsinφr sinθer,eφ,eθdr,dφ,dθer,rsinθeφ,reθdl=(dr)2+(rsinθdφ)2+(dθ)2

第一型曲面积分
  • 参考重积分应用中已经涉及到的面积微元

  • 在参数方程 ( x , y , z ) = f ( u , v ) (x,y,z)=f(u,v) (x,y,z)=f(u,v)

r u = ( ∂ x ∂ u , ∂ y ∂ u , ∂ z ∂ u ) r v = ( ∂ x ∂ v , ∂ y ∂ v , ∂ z ∂ v ) d S = d e t ∣ r u ⋅ r u r u ⋅ r v r v ⋅ r u r v ⋅ r v ∣ d u d v r_u=(\frac{\partial x}{\partial u},\frac{\partial y}{\partial u},\frac{\partial z}{\partial u})\\ r_v=(\frac{\partial x}{\partial v},\frac{\partial y}{\partial v},\frac{\partial z}{\partial v})\\ dS=\sqrt{det\begin{vmatrix} r_u\cdot r_u & r_u\cdot r_v\\ r_v\cdot r_u & r_v\cdot r_v \end{vmatrix}}dudv ru=(ux,uy,uz)rv=(vx,vy,vz)dS=detrururvrururvrvrv dudv

  • d u , d v du,dv du,dv前的系数恰好是 r u , r v r_u,r_v ru,rv张成的平行四边形的面积

∬ Ω f ( x , y , z ) d S = ∬ Ω ∗ f ( u , v ) d e t ∣ r u ⋅ r u r u ⋅ r v r v ⋅ r u r v ⋅ r v ∣ d u d v \iint _\Omega f(x,y,z)dS=\iint _{\Omega^*}f(u,v)\sqrt{det\begin{vmatrix} r_u\cdot r_u & r_u\cdot r_v\\ r_v\cdot r_u & r_v\cdot r_v \end{vmatrix}}dudv Ωf(x,y,z)dS=Ωf(u,v)detrururvrururvrvrv dudv

  • 特别的在 ( x , y , z ) = ( x , y , z ( x , y ) ) (x,y,z)=(x,y,z(x,y)) (x,y,z)=(x,y,z(x,y))

d S = 1 + ( ∂ z ∂ x ) 2 + ( ∂ z ∂ y ) 2 d x d y dS=\sqrt{1+(\frac{\partial z}{\partial x})^2+(\frac{\partial z}{\partial y})^2}dxdy dS=1+(xz)2+(yz)2 dxdy

  • 另有在 n n n维空间中的 n − 1 n-1 n1维超平面可以用 n − 1 n-1 n1个基的叉积的模长计算,泛用性不如上面
  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值