数学分析(二十)-曲线积分1-第一型曲线积分2:第一型曲线积分的计算【∫ᴸf(x,y)ds=∫ᵃᵦf(φ(t),ψ(t))√[φˊ²(t)+ψˊ²(t)]dt】

本文详细讲解了第一型曲线积分的计算方法,包括定理20.1的证明,通过举例展示了如何计算特定曲线上的第一型曲线积分,并推广到空间曲线积分的情况。此外,还探讨了线密度为ρ(x,y)=1+x^2/y的曲线段对y轴的转动惯量问题。" 115338378,10311651,Python实现OJ系统中总成绩排序,"['Python', '在线判题系统', '数据结构', '排序算法']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定理 20.1

设有光滑曲线

L : { x = φ ( t ) , y = ψ ( t ) , t ∈ [ α , β ] , L:\left\{\begin{array}{l} x=\varphi(t), \\ y=\psi(t), \end{array} \quad t \in[\alpha, \beta],\right. L:{ x=φ(t),y=ψ(t),t[α,β],

函数 f ( x , y ) f(x, y) f(x,y) 为定义在 L L L 上的连续函数, 则

∫ L f ( x , y ) d s = ∫ α β f ( φ ( t ) , ψ ( t ) ) φ ′ 2 ( t ) + ψ ′ 2 ( t ) d t . ( 3 ) \int_{L} f(x, y) \mathrm{d} s=\int_{\alpha}^{\beta} f(\varphi(t), \psi(t)) \sqrt{\varphi^{\prime 2}(t)+\psi^{\prime 2}(t)} \mathrm{d} t .\quad\quad(3) Lf(x,y)ds=αβf(φ(t),ψ(t))φ′2(t)+ψ′2(t) dt.(3)


由弧长公式知道, L L L 上由 t = t i − 1 t=t_{i-1} t=ti1 t = t i t=t_{i} t=ti 的弧长

Δ s i = ∫ t i − 1 t i φ ′ 2 ( t ) + ψ ′ 2 ( t ) d t . \Delta s_{i}=\int_{t_{i-1}}^{t_{i}} \sqrt{\varphi^{\prime 2}(t)+\psi^{\prime 2}(t)} \mathrm{d} t . Δsi=ti1tiφ′2(t)+ψ′2(t) dt.

φ ′ 2 ( t ) + ψ ′ 2 ( t ) \sqrt{\varphi^{\prime 2}(t)+\psi^{\prime 2}(t)} φ′2(t)+ψ′2(t) 的连续性与积分中值定理, 有

Δ s i = φ ′ 2 ( τ i ′ ) + ψ ′ 2 ( τ i ′ ) Δ t i ( t i − 1 < τ i ′ < t i ) . \Delta s_{i}=\sqrt{\varphi^{\prime 2}\left(\tau_{i}^{\prime}\right)+\psi^{\prime 2}\left(\tau_{i}^{\prime}\right)} \Delta t_{i} \quad\left(t_{i-1}<\tau_{i}^{\prime}<t_{i}\right) . Δsi=φ′2(τi)+ψ′2(τi) Δti(ti1<τi<ti).

所以

∑ i = 1 n f ( ξ i , η i ) Δ s i = ∑ i = 1 n f ( φ ( τ i ′ ′ ) , ψ ( τ i ′ ′ ) ) φ ′ 2 ( τ i ′ ) + ψ ′ 2 ( τ i ′ ) Δ t i , \sum_{i=1}^{n} f\left(\xi_{i}, \eta_{i}\right) \Delta s_{i}=\sum_{i=1}^{n} f\left(\varphi\left(\tau_{i}^{\prime \prime}\right), \psi\left(\tau_{i}^{\prime \prime}\right)\right) \sqrt{\varphi^{\prime 2}\left(\tau_{i}^{\prime}\right)+\psi^{\prime 2}\left(\tau_{i}^{\prime}\right)} \Delta t_{i}, i=1nf(ξi,ηi)Δsi=i=1nf(φ(τi′′),ψ(τi′′))φ′2(τi)+ψ′2(τi) Δti,

这里 t i − 1 ⩽ τ i ′ , τ i ′ ′ ⩽ t i t_{i-1} \leqslant \tau_{i}^{\prime}, \tau_{i}^{\prime \prime} \leqslant t_{i} ti1τi,τi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值