定理 20.1
设有光滑曲线
L : { x = φ ( t ) , y = ψ ( t ) , t ∈ [ α , β ] , L:\left\{\begin{array}{l} x=\varphi(t), \\ y=\psi(t), \end{array} \quad t \in[\alpha, \beta],\right. L:{ x=φ(t),y=ψ(t),t∈[α,β],
函数 f ( x , y ) f(x, y) f(x,y) 为定义在 L L L 上的连续函数, 则
∫ L f ( x , y ) d s = ∫ α β f ( φ ( t ) , ψ ( t ) ) φ ′ 2 ( t ) + ψ ′ 2 ( t ) d t . ( 3 ) \int_{L} f(x, y) \mathrm{d} s=\int_{\alpha}^{\beta} f(\varphi(t), \psi(t)) \sqrt{\varphi^{\prime 2}(t)+\psi^{\prime 2}(t)} \mathrm{d} t .\quad\quad(3) ∫Lf(x,y)ds=∫αβf(φ(t),ψ(t))φ′2(t)+ψ′2(t)dt.(3)
证
由弧长公式知道, L L L 上由 t = t i − 1 t=t_{i-1} t=ti−1 到 t = t i t=t_{i} t=ti 的弧长
Δ s i = ∫ t i − 1 t i φ ′ 2 ( t ) + ψ ′ 2 ( t ) d t . \Delta s_{i}=\int_{t_{i-1}}^{t_{i}} \sqrt{\varphi^{\prime 2}(t)+\psi^{\prime 2}(t)} \mathrm{d} t . Δsi=∫ti−1tiφ′2(t)+ψ′2(t)dt.
由 φ ′ 2 ( t ) + ψ ′ 2 ( t ) \sqrt{\varphi^{\prime 2}(t)+\psi^{\prime 2}(t)} φ′2(t)+ψ′2(t)的连续性与积分中值定理, 有
Δ s i = φ ′ 2 ( τ i ′ ) + ψ ′ 2 ( τ i ′ ) Δ t i ( t i − 1 < τ i ′ < t i ) . \Delta s_{i}=\sqrt{\varphi^{\prime 2}\left(\tau_{i}^{\prime}\right)+\psi^{\prime 2}\left(\tau_{i}^{\prime}\right)} \Delta t_{i} \quad\left(t_{i-1}<\tau_{i}^{\prime}<t_{i}\right) . Δsi=φ′2(τi′)+ψ′2(τi′)Δti(ti−1<τi′<ti).
所以
∑ i = 1 n f ( ξ i , η i ) Δ s i = ∑ i = 1 n f ( φ ( τ i ′ ′ ) , ψ ( τ i ′ ′ ) ) φ ′ 2 ( τ i ′ ) + ψ ′ 2 ( τ i ′ ) Δ t i , \sum_{i=1}^{n} f\left(\xi_{i}, \eta_{i}\right) \Delta s_{i}=\sum_{i=1}^{n} f\left(\varphi\left(\tau_{i}^{\prime \prime}\right), \psi\left(\tau_{i}^{\prime \prime}\right)\right) \sqrt{\varphi^{\prime 2}\left(\tau_{i}^{\prime}\right)+\psi^{\prime 2}\left(\tau_{i}^{\prime}\right)} \Delta t_{i}, i=1∑nf(ξi,ηi)Δsi=i=1∑nf(φ(τi′′),ψ(τi′′))φ′2(τi′)+ψ′2(τi′)Δti,
这里 t i − 1 ⩽ τ i ′ , τ i ′ ′ ⩽ t i t_{i-1} \leqslant \tau_{i}^{\prime}, \tau_{i}^{\prime \prime} \leqslant t_{i} ti−1⩽τi′,τi