学习才是最快乐的
一般形式
二阶常系数非齐次微分方程的一般形式可以表示为:
y ′ ′ + a y ′ + b y = f ( x ) y''+ay'+by=f(x) y′′+ay′+by=f(x)
其中, a a a、 b b b为常数, f ( x ) f(x) f(x)为已知的函数, y = y ( x ) y=y(x) y=y(x)是未知函数。这里的二阶表示方程中最高阶导数为2阶,常系数表示方程中的 a a a和 b b b为常数,非齐次表示方程右侧有非零的函数 f ( x ) f(x) f(x)。
求解的一般步骤
求解二阶常系数非齐次微分方程的一般步骤如下:
-
求解对应的齐次方程,即将非齐次项置零,得到二阶齐次线性微分方程
-
求解齐次方程的特征方程,得到其通解形式
-
根据非齐次项的形式选择待定系数法或变异参数法求出非齐次方程的一个特解
-
将通解与特解相加,得到非齐次方程的通解
具体步骤如下:
假设有二阶常系数非齐次微分方程:
y ′ ′ ( x ) + a 1 y ′ ( x ) + a 2 y ( x ) = f ( x ) y''(x)+a_1y'(x)+a_2 y(x)=f(x) y′′(x)+a1y′(x)+a2y(x)=f(x)
- 求解对应的齐次方程:
y ′ ′ ( x ) + a 1 y ′ ( x ) + a 2 y ( x ) = 0 y''(x)+a_1y'(x)+a_2 y(x)=0 y′′(x)+a1y′(x)+a2y(x)=0
-
求解齐次方程的特征方程:
特征方程为 r 2 + a 1 r + a 2 = 0 r^2+a_1r+a_2=0 r2+a1r+a2=0,求解得到其两个特征根 r 1 r_1 r1 和 r 2 r_2 r2。
当 r 1 r_1 r1 和 r 2 r_2 r2 为不同的实数时,齐次方程的通解为:
y ( x ) = c 1 e r 1 x + c 2 e r 2 x y(x) = c_1 e^{r_1x} + c_2 e^{r_2x} y(x)=c1er1x+c2er2x
当 r 1 = r 2 r_1 = r_2 r1=r2 为相同的实数时,齐次方程的通解为:
y ( x ) = c 1 e r 1 x + c 2 x e r 2 x y(x) = c_1 e^{r_1x} + c_2 x e^{r_2x} y(x)=c1er1x+c2xer2x
当 r 1 r_1 r1 和 r 2 r_2 r2 为共轭复数时,齐次方程的通解为:
y ( x ) = e α x ( c 1 c o s ( β x ) + c 2 c o s ( β x ) ) y(x) = e^{\alpha x}(c_1 cos(\beta x) + c_2cos(\beta x)) y(x)=eαx(c1cos(βx)+c2cos(βx))其中 α = − a 1 / 2 \alpha = -a_1/2 α=−a1/2, β = a 2 − α 2 \beta = \sqrt{a_2-\alpha^2} β=a2−α2, c 1 c_1 c1 和 c 2 c_2 c2 为任意常数。 -
根据非齐次项的形式选择待定系数法、求出非齐次方程的一个特解。具体选择哪种方法取决于非齐次项的形式。具体方法求二阶常系数线性非齐次微分方程的特解,请看下一篇文章
- 待定系数法:
当非齐次项为 f ( x ) = P n ( x ) e m x f(x) = P_n(x)e^{mx} f(x)=Pn(x)emx,其中 P n ( x ) P_n(x) Pn(x) 为 x x x 的 n n n 次多项式时,可以采用待定系数法求解。假设特解为: y p ( x ) = Q n ( x ) e m x y_p(x) = Q_n(x) e^{m x} yp(x)=Qn(x)emx其中 Q n ( x ) Q_n(x) Qn(x) 为 x x x 的 n n n 次多项式,根据待定系数法的规则,求出 Q n ( x ) Q_n(x) Qn(x) 的系数,带入非齐次方程中得到 y p ( x ) y_p(x) yp(x) 的表达式。
确定了 y c y_c yc 和 y p y_p yp 后,我们可以将它们相加得到原方程的通解 y = y c + y p y=y_c+y_p y=yc+yp。
举个例子
假设我们要求解二阶常系数非齐次线性微分方程
y
′
′
+
4
y
=
s
i
n
(
2
x
)
y''+ 4y=sin(2x)
y′′+4y=sin(2x)
首先,我们需要先求出对应的齐次方程的通解。这里,齐次方程为
y
′
′
+
4
y
=
0
y''+ 4y=0
y′′+4y=0
特征方程为
r
2
+
4
=
0
r^2+4=0
r2+4=0
解得
r
=
±
2
i
r=\pm2i
r=±2i,因此齐次方程的通解为
y
h
=
c
1
c
o
s
(
2
x
)
+
c
2
s
i
n
(
2
x
)
y_h = c_1 cos(2x) + c_2sin(2x)
yh=c1cos(2x)+c2sin(2x)
接下来,我们需要找到一个特解
y
p
y_p
yp。因为非齐次方程的右边是
sin
(
2
x
)
\sin(2x)
sin(2x),我们可以猜测
y
p
y_p
yp 的形式为
y
p
=
A
s
i
n
(
2
x
)
+
B
c
o
s
(
2
x
)
y_p = Asin(2x) + Bcos(2x)
yp=Asin(2x)+Bcos(2x) 其中
A
A
A 和
B
B
B 是待定常数。将
y
p
y_p
yp 代入非齐次方程中,得到
−
4
A
s
i
n
(
2
x
)
+
4
B
c
o
s
(
2
x
)
=
s
i
n
(
2
x
)
-4Asin(2x) + 4Bcos(2x)=sin(2x)
−4Asin(2x)+4Bcos(2x)=sin(2x)
通过比较系数,我们得到
A
=
−
1
8
A=-\frac{1}{8}
A=−81,
B
=
0
B=0
B=0。因此,特解为
y
p
=
−
1
8
s
i
n
(
2
x
)
y_p = -\frac{1}{8}sin(2x)
yp=−81sin(2x)
最终的通解为
c
1
c
o
s
(
2
x
)
+
c
2
s
i
n
(
2
x
)
−
1
8
s
i
n
(
2
x
)
c_1 cos(2x) + c_2sin(2x) -\frac{1}{8}sin(2x)
c1cos(2x)+c2sin(2x)−81sin(2x)这样,我们就成功地求解了二阶常系数非齐次线性微分方程。
关于 求二阶常系数线性非齐次微分方程的特解,请看下面:
---------------------------------------------我是分割线------------------------------------------------------
求二阶常系数线性非齐次微分方程的特解的方法有哪些?
给出二阶常系数线性非齐次微分方程
y
″
(
t
)
+
A
y
′
(
t
)
+
B
y
(
t
)
=
g
(
t
)
,
g
(
t
)
≠
0
y″(t)+Ay'(t)+By(t)=g(t), g(t)≠0
y″(t)+Ay′(t)+By(t)=g(t),g(t)=0
1. 如果 g ( t ) g(t) g(t) 里有指数函数,在特解里也要用相同的指数函数。
例:
y
″
−
y
′
−
6
y
=
e
t
y″−y'−6y=e^t
y″−y′−6y=et 先把方程设齐次,然后解通解:
y
″
−
y
′
−
6
y
=
0
y″−y'−6y=0
y″−y′−6y=0
r
2
−
r
−
6
=
(
r
+
2
)
(
r
−
3
)
=
0
r^2-r-6=(r+2)(r-3)=0
r2−r−6=(r+2)(r−3)=0
通解: y c = C 1 e − 2 t + C 2 e 3 t y_c=C_1e^{-2t}+C_2e^{3t} yc=C1e−2t+C2e3t
然后解特解: y p = A e t , y p ′ = A e t , y p ′ ′ = A e t y_p=Ae^{t}, \ \ y'_p=Ae^{t}, \ \ y''_p=Ae^{t} yp=Aet, yp′=Aet, yp′′=Aet
代入原方程,得, A e t − A e t − 6 A e t = e t Ae^{t}-Ae^{t}-6Ae^{t}=e^{t} Aet−Aet−6Aet=et
A − A − 6 A = 1 A−A−6A=1 A−A−6A=1
A = − 1 6 A=-\frac{1}{6} A=−61
特解: y p = − 1 6 e t y_p=-\frac{1}{6}e^{t} yp=−61et
最后 y = y c + y p = C 1 e − 2 t + C 2 e 3 t − 1 6 e t y=y_c+y_p=C_1e^{-2t}+C_2e^{3t} -\frac{1}{6}e^{t} y=yc+yp=C1e−2t+C2e3t−61et
2. 如果 g ( t ) g(t) g(t) 是多项式,在特解里要用通用相同次数的多项式。
例: y ″ − y ′ − 6 y = t 2 + t + 1 y″−y'−6y=t^2+t+1 y″−y′−6y=t2+t+1
通解: y c = C 1 e − 2 t + C 2 e 3 t y_c=C_1e^{-2t}+C_2e^{3t} yc=C1e−2t+C2e3t
然后解特解: y p = A t 2 + B t + C , y p ′ = 2 A t + B , y p ′ ′ = 2 A y_p=At^2+Bt+C, \ \ y'_p=2At+B, \ \ y''_p=2A yp=At2+Bt+C, yp′=2At+B, yp′′=2A
代入原方程, 得
2
A
−
(
2
A
t
+
B
)
−
6
(
A
t
2
+
B
t
+
C
)
=
t
2
+
t
+
1
2A-(2At+B)-6(At^{2}+Bt+C)=t^2+t+1
2A−(2At+B)−6(At2+Bt+C)=t2+t+1
化简,比较系数,解 A A A, B B B, C C C得,
A = − 1 6 , B = − 1 9 , C = − 11 54 A=-\frac{1}{6}, \ \ B=-\frac{1}{9}, \ \ C=-\frac{11}{54} A=−61, B=−91, C=−5411
特解: y p = − 1 6 t 2 − 1 9 t − 11 54 y_p=-\frac{1}{6}t^2 -\frac{1}{9}t -\frac{11}{54} yp=−61t2−91t−5411
最后, y = y c + y p = C 1 e − 2 t + C 2 e 3 t − 1 6 t 2 − 1 9 t − 11 54 y =y_c+y_p=C_1e^{-2t}+C_2e^{3t} -\frac{1}{6}t^2 -\frac{1}{9}t -\frac{11}{54} y=yc+yp=C1e−2t+C2e3t−61t2−91t−5411
3. 如果 g ( t ) g(t) g(t) 里含有 c o s cos cos 或者 s i n sin sin 函数,特解里要用 c o s cos cos 和 s i n sin sin 函数。
例: y ′ ′ − y ′ − 6 y = 2 c o s ( t ) y''-y'-6y=2cos(t) y′′−y′−6y=2cos(t)
通解: y c = C 1 e − 2 t + C 2 e 3 t y_c=C_1e^{-2t}+C_2e^{3t} yc=C1e−2t+C2e3t
然后解特解: y p = A cos ( t ) + B sin ( t ) , y p ′ = − A sin ( t ) + B cos ( t ) , y p ′ ′ = − A cos ( t ) − B sin ( t ) y_p=A\cos(t)+B\sin(t), \ \ y'_p=-A\sin(t)+B\cos(t), \ \ y''_p=-A\cos(t)-B\sin(t) yp=Acos(t)+Bsin(t), yp′=−Asin(t)+Bcos(t), yp′′=−Acos(t)−Bsin(t)
代入原方程, 得, [ − A cos ( t ) − B sin ( t ) ] − [ − A sin ( t ) + B cos ( t ) ] − 6 [ A cos ( t ) + B sin ( t ) ] = 2 cos ( t ) [-A\cos(t)-B\sin(t)]-[-A\sin(t)+B\cos(t)]-6[A\cos(t)+B\sin(t)]=2\cos(t) [−Acos(t)−Bsin(t)]−[−Asin(t)+Bcos(t)]−6[Acos(t)+Bsin(t)]=2cos(t)
化简,比较系数,得,
( − B + A − 6 B ) s i n ( t ) + ( − A − B − 6 A ) c o s ( t ) = 2 c o s ( t ) (−B+A−6B)sin(t)+(−A−B−6A)cos(t)=2cos(t) (−B+A−6B)sin(t)+(−A−B−6A)cos(t)=2cos(t)
{ − 7 B + A = 0 − 7 A − B = 2 \begin{cases} -7B+A=0 \\ -7A-B=2 \end{cases} {−7B+A=0−7A−B=2
得, A = − 7 25 , B = − 1 25 A=-\frac{7}{25}, \ \ B = -\frac{1}{25} A=−257, B=−251
特解: y p = − 1 25 sin ( t ) − 7 25 cos ( t ) y_p=-\frac{1}{25}\sin(t) -\frac{7}{25}\cos(t) yp=−251sin(t)−257cos(t)
最后, y = y c + y p = C 1 e − 2 t + C 2 e 3 t − 1 25 sin ( t ) − 7 25 cos ( t ) y=y_c+y_p=C_1e^{-2t}+C_2e^{3t} -\frac{1}{25}\sin(t) -\frac{7}{25}\cos(t) y=yc+yp=C1e−2t+C2e3t−251sin(t)−257cos(t)
4. 如果 g ( t ) g(t) g(t) 是 n n n 个函数相加,那么要把方程拆分成n个部分,依次求特解。
y ′ ′ + A y ′ + B y = g 1 ( t ) + g 2 ( t ) + … + g n ( t ) y'' + Ay' + By = g_{1}(t) + g_{2}(t) + … + g_{n}(t) y′′+Ay′+By=g1(t)+g2(t)+…+gn(t)
得, y ′ ′ + A y ′ + B y = g 1 ( t ) y ′ ′ + A y ′ + B y = g 2 ( t ) . . . y ′ ′ + A y ′ + B y = g n ( t ) y'' + Ay' + By = g_{1}(t) \\\ y'' +Ay' + By = g_{2}(t) \\\ . \\\ . \\\ . \\\ y'' +Ay' + By = g_{n}(t) y′′+Ay′+By=g1(t) y′′+Ay′+By=g2(t) . . . y′′+Ay′+By=gn(t)
对以上的n个微分方程依次求特解,
例: y ′ ′ − y ′ − 6 y = e t + t 2 + t + 1 + 2 cos ( t ) y''-y'-6y=e^{t} + t^2+t+1 + 2\cos(t) y′′−y′−6y=et+t2+t+1+2cos(t)
通解: y c = C 1 e − 2 t + C 2 e 3 t y_c=C_1e^{-2t}+C_2e^{3t} yc=C1e−2t+C2e3t
然后解特解:
y ′ ′ − y ′ − 6 y = e t → y p 1 = − 1 6 e t y''-y'-6y=e^{t} \ \ \rightarrow \ \ y_{p_1}=-\frac{1}{6}e^{t} y′′−y′−6y=et → yp1=−61et
y ′ ′ − y ′ − 6 y = t 2 + t + 1 → y p 2 = − 1 6 t 2 − 1 9 t − 11 54 y''-y'-6y=t^2+t+1 \ \ \rightarrow \ \ y_{p_2}=-\frac{1}{6}t^2 -\frac{1}{9}t -\frac{11}{54} y′′−y′−6y=t2+t+1 → yp2=−61t2−91t−5411
y ′ ′ − y ′ − 6 y = 2 cos ( t ) → y p 3 = − 1 25 sin ( t ) − 7 25 cos ( t ) y''-y'-6y=2\cos(t) \ \ \rightarrow \ \ y_{p_3}=-\frac{1}{25}\sin(t) -\frac{7}{25}\cos(t) y′′−y′−6y=2cos(t) → yp3=−251sin(t)−257cos(t)
特解: y p = y p 1 + y p 2 + y p 3 = − 1 6 e t − 1 6 t 2 − 1 9 t − 11 54 − 1 25 sin ( t ) − 7 25 cos ( t ) y_p= y_{p_1}+y_{p_2}+y_{p_3}= -\frac{1}{6}e^{t} -\frac{1}{6}t^2 -\frac{1}{9}t -\frac{11}{54} -\frac{1}{25}\sin(t) -\frac{7}{25}\cos(t) yp=yp1+yp2+yp3=−61et−61t2−91t−5411−251sin(t)−257cos(t)
最后, y = y c + y p = C 1 e − 2 t + C 2 e 3 t − 1 6 e t − 1 6 t 2 − 1 9 t − 11 54 − 1 25 sin ( t ) − 7 25 cos ( t ) y=y_c+y_p=C_1e^{-2t}+C_2e^{3t} -\frac{1}{6}e^{t} -\frac{1}{6}t^2 -\frac{1}{9}t -\frac{11}{54} -\frac{1}{25}\sin(t) -\frac{7}{25}\cos(t) y=yc+yp=C1e−2t+C2e3t−61et−61t2−91t−5411−251sin(t)−257cos(t)
来做一道题
y ′ ′ − y − 6 y = e 3 t y'' - y -6y = e^{3t} y′′−y−6y=e3t
通解: y c = C 1 e − 2 t + C 2 e 3 t y_c=C_1e^{-2t}+C_2e^{3t} yc=C1e−2t+C2e3t
然后解特解: y p = A e 3 t , y p ′ = 3 A e 3 t , y p ′ ′ = 9 A e 3 t y_p = Ae^{3t}, \ \ y'_p = 3Ae^{3t}, \ \ y''_p = 9Ae^{3t} yp=Ae3t, yp′=3Ae3t, yp′′=9Ae3t
代入原方程,得, 9 A e 3 t − 3 A e 3 t − 6 A e 3 t = e 3 t 9Ae^{3t} - 3Ae^{3t}-6Ae^{3t} = e^{3t} 9Ae3t−3Ae3t−6Ae3t=e3t
化简,得, 0 = e 3 t 0 = e^{3t} 0=e3t
这意味着, A A A 算不出来。难道算错了?难道方法有问题?
这里引出第五条。
5. 列出预选的特解,一定要和通解进行比较。如果预选特解中和通解中出现重复项,那么要在特解上乘以 t t t,直到不再出现重复项。
例1: y ′ ′ − 8 y ′ + 16 y = e 4 t y'' - 8y' + 16 y = e^{4t} y′′−8y′+16y=e4t
通解: y c = C 1 e 4 t + C 2 t e 4 t y_c = C_1 e^{4t} + C_2 t e^{4t} yc=C1e4t+C2te4t
g ( t ) = e 4 t g(t) = e^{4t} g(t)=e4t 因此初选特解$ y_p = Ae^{4t}$,但是 y p y_p yp 和 y c y_c yc 中第一项相同,那么要在 y p y_p yp 乘以 t t t,得, y p = A t e 4 t y_p = Ate^{4t} yp=Ate4t。但是 y p y_p yp和 y c y_c yc 中第二项也相同,那么再乘以 t t t ,得, y p = A t 2 e 4 t y_p = At^{2}e^{4t} yp=At2e4t把特解和通解再比较,没有重复了。特解选好了。
y p = A t 2 e 4 t , y p ′ = 2 A t e 4 t + 4 A t 2 e 4 t , y p ′ ′ = 16 A t 2 e 4 t + 16 A t e 4 t + 2 A e 4 t y_p = At^{2}e^{4t}, \ \ y'_p = 2Ate^{4t} + 4At^{2}e^{4t}, \ \ y''_p = 16At^{2}e^{4t} + 16Ate^{4t} + 2Ae^{4t} yp=At2e4t, yp′=2Ate4t+4At2e4t, yp′′=16At2e4t+16Ate4t+2Ae4t
代入原方程,得,
( 16 A t 2 e 4 t + 16 A t e 4 t + 2 A e 4 t ) − 8 ( 2 A t e 4 t + 4 A t 2 e 4 t ) + 16 ( A t 2 e 4 t ) = e 4 t (16At^{2}e^{4t} + 16Ate^{4t} + 2Ae^{4t}) - 8(2Ate^{4t} + 4At^{2}e^{4t}) + 16 (At^{2}e^{4t}) = e^{4t} (16At2e4t+16Ate4t+2Ae4t)−8(2Ate4t+4At2e4t)+16(At2e4t)=e4t
化简,得, 2 A e 4 t = e 4 t → A = 1 2 2 Ae^{4 t}=e^{4 t} \ \ \rightarrow \ \ A = \frac{1}{2} 2Ae4t=e4t → A=21
特解: y p = 1 2 t 2 e 4 t y_p = \frac{1}{2} t^{2} e^{4 t} yp=21t2e4t
最后, y = y c + y p = C 1 e 4 t + C 2 t e 4 t + 1 2 t 2 e 4 t y = y_c + y_p = C_1 e^{4t} + C_2 t e^{4t} + \frac{1}{2} t^{2} e^{4 t} y=yc+yp=C1e4t+C2te4t+21t2e4t
例2: y ′ ′ + 2 y ′ = 3 t 2 + 2 t + 1 y'' + 2y' = 3t^{2} + 2t +1 y′′+2y′=3t2+2t+1
r 2 + 2 r = 0 → r ( r + 2 ) = 0 → r 1 = 0 a n d r 2 = − 2 r^{2} + 2r =0 \rightarrow r(r+2) = 0\rightarrow r_1 = 0 \ \ and \ \ r_2 = -2 r2+2r=0→r(r+2)=0→r1=0 and r2=−2
y c = C 1 e r 1 t + C 2 e r 2 t = C 1 e 0 + C 2 e − 2 t y_c = C_1 e^{r_1 t} + C_2 e^{r_2 t} = C_1 e^{0} + C_2 e^{-2t} yc=C1er1t+C2er2t=C1e0+C2e−2t
通解: y c = C 1 + C 2 e − 2 t y_c = C_1 + C_2 e^{-2t} yc=C1+C2e−2t
然后解特解:
设
y
p
=
A
t
2
+
B
t
+
C
y_p = At^2 + Bt + C
yp=At2+Bt+C 然后和
y
c
=
C
1
+
C
2
e
−
2
t
y_c =C_1 + C_2 e^{-2t}
yc=C1+C2e−2t 比较,发现
C
1
C_1
C1 重复,在
y
p
=
A
t
2
+
B
t
+
C
y_p = At^2 + Bt + C
yp=At2+Bt+C 现有基础上乘以
t
t
t ,得
y
p
=
A
t
3
+
B
t
2
+
C
t
y_p = At^3 + Bt^2 + Ct
yp=At3+Bt2+Ct
y
p
′
=
3
A
t
2
+
2
B
t
+
C
y_p' = 3At^2 + 2Bt + C
yp′=3At2+2Bt+C
y
p
′
′
=
6
A
t
+
2
B
y_p'' = 6At + 2B
yp′′=6At+2B
代入原方程,得,
6 A t + 2 B + 2 ( 3 A t 2 + 2 B t + C ) = 3 t 2 + 2 t + 1 6At + 2B + 2(3At^2 + 2Bt + C) = 3t^{2} + 2t +1 6At+2B+2(3At2+2Bt+C)=3t2+2t+1
化简,得,
{ 6 A = 3 6 A + 4 B = 2 2 B + 2 C = 1 \begin{equation} \begin{cases} 6A=3 \\ 6A+4B=2 \\ 2B+2C=1 \end{cases} \end{equation} ⎩ ⎨ ⎧6A=36A+4B=22B+2C=1
比较系数,得, A = 1 2 , B = − 1 4 , C = 3 4 A = \frac{1}{2}, \ \ B = - \frac{1}{4} , \ \ C = \frac{3}{4} A=21, B=−41, C=43
特解: y p = 1 2 t 3 − 1 4 t 2 + 3 4 t y_p = \frac{1}{2} t^3 - \frac{1}{4} t^2 + \frac{3}{4} t yp=21t3−41t2+43t
最后, y = y c + y p = C 1 + C 2 e − 2 t + 1 2 t 3 − 1 4 t 2 + 3 4 t y = y_c + y_p = C_1 + C_2 e^{-2t} + \frac{1}{2} t^3 - \frac{1}{4} t^2 + \frac{3}{4} t y=yc+yp=C1+C2e−2t+21t3−41t2+43t
6. 如果 g ( t ) g(t) g(t) 是两个或两个以上函数相乘,那么特解中要用 g ( t ) g(t) g(t) 中每个函数对应的特解相乘来求解。
例1: y ′ ′ − y ′ − 6 y = t 2 e t cos ( t ) y''-y'-6y=t^2 e^{t} \cos(t) y′′−y′−6y=t2etcos(t)
其中, g ( t ) = t 2 e t cos ( t ) g(t) = t^2 e^{t} \cos(t) g(t)=t2etcos(t) 是由二次多项式、指数函数和 c o s cos cos 函数相乘所得。特解中要用通用二次多项式、指数函数和cos函数。
正确格式:
y
p
=
(
A
t
2
+
B
t
+
C
)
e
t
cos
(
t
)
+
(
D
t
2
+
E
t
+
F
)
e
t
sin
(
t
)
y_p = (At^2 + Bt + C) e^{t} \cos(t) + (Dt^2 + Et + F) e^{t} \sin(t)
yp=(At2+Bt+C)etcos(t)+(Dt2+Et+F)etsin(t)
错误格式:
y
p
=
(
A
t
2
+
B
t
+
C
)
D
e
t
(
E
cos
(
t
)
+
F
sin
(
t
)
)
y_p = (At^2 + Bt + C) De^{t} (E \cos(t) + F \sin(t))
yp=(At2+Bt+C)Det(Ecos(t)+Fsin(t))
最后,特解选 y p = ( A t 2 + B t + C ) e t cos ( t ) + ( D t 2 + E t + F ) e t sin ( t ) y_p = (At^2 + Bt + C) e^{t} \cos(t) + (Dt^2 + Et + F) e^{t} \sin(t) yp=(At2+Bt+C)etcos(t)+(Dt2+Et+F)etsin(t)
例2: y ′ ′ ( x ) − 6 y ′ ( x ) + 9 y ( x ) = x e 2 x y''(x)-6y'(x)+9y(x)=x e^{2x} y′′(x)−6y′(x)+9y(x)=xe2x
先把方程设齐次, y ′ ′ ( x ) − 6 y ′ ( x ) + 9 y ( x ) = 0 y''(x)-6y'(x)+9y(x)=0 y′′(x)−6y′(x)+9y(x)=0
解通解, r 2 − 6 r + 9 = 0 ⇒ ( r − 3 ) ( r − 3 ) = ( r − 3 ) 2 = 0 r^2 - 6r + 9 = 0 \Rightarrow (r-3)(r-3) = (r-3)^2 = 0 r2−6r+9=0⇒(r−3)(r−3)=(r−3)2=0
得 r 1 = r 2 = 3 r_1 = r_2 = 3 r1=r2=3
y c = C 1 e 3 x + C 2 e 3 x y_c = C_1 e^{3x} + C_2 e^{3x} yc=C1e3x+C2e3x发现 y c y_c yc 中 C 1 e 3 x C_1 e^{3x} C1e3x 和 C 2 e 3 x C_2 e^{3x} C2e3x 出现重复,在 $C_2 e^{3x} $乘以 x x x ,得 y c = C 1 e 3 x + C 2 x e 3 x y_c = C_1 e^{3x} + C_2 x e^{3x} yc=C1e3x+C2xe3x
通解: y c = C 1 e 3 x + C 2 x e 3 x y_c = C_1 e^{3x} + C_2 x e^{3x} yc=C1e3x+C2xe3x
解特解, g ( t ) = x e 2 x g(t) = x e^{2x} g(t)=xe2x 是多项式和指数函数相乘所得。特解中要用多项式和指数函数相乘。
设特解 y p = ( A x + B ) e 2 x y_p = (Ax+B) e^{2x} yp=(Ax+B)e2x y p ′ = ( A + 2 B ) e 2 x + 2 A x e 2 x y'_p = (A+2B) e^{2x} + 2Ax e^{2x} yp′=(A+2B)e2x+2Axe2x y p ′ ′ = ( 4 A + 4 B ) e 2 x + 4 A x e 2 x y''_p=(4A+4B) e^{2x} + 4Ax e^{2x} yp′′=(4A+4B)e2x+4Axe2x
代入原微分方程,得 ( 4 A + 4 B ) e 2 x + 4 A x e 2 x − 6 ( A + 2 B ) e 2 x − 12 A x e 2 x + 9 ( A x + B ) e 2 x = x e 2 x (4A+4B) e^{2x} + 4Ax e^{2x}-6(A+2B) e^{2x} - 12Ax e^{2x}+9(Ax+B) e^{2x}=x e^{2x} (4A+4B)e2x+4Axe2x−6(A+2B)e2x−12Axe2x+9(Ax+B)e2x=xe2x
化简,得 ( 4 A + 4 B ) e 2 x + 4 A x e 2 x − 6 ( A + 2 B ) e 2 x − 12 A x e 2 x + 9 A x e 2 x + B e 2 x = x e 2 x (4A+4B) e^{2x} + 4Ax e^{2x}-6(A+2B) e^{2x} - 12Ax e^{2x}+9Axe^{2x}+B e^{2x}=x e^{2x} (4A+4B)e2x+4Axe2x−6(A+2B)e2x−12Axe2x+9Axe2x+Be2x=xe2x
化简,比较系数,得
{ 4 A + 4 B − 6 A − 12 B + 9 B = 0 4 A − 12 A + 9 A = 1 ⇒ { A = 1 B = 2 \begin{cases} 4A+4B-6A-12B+9B=0 \\ 4A-12A+9A = 1 \end{cases} \Rightarrow \begin{cases} A= 1 \\ B = 2 \end{cases} {4A+4B−6A−12B+9B=04A−12A+9A=1⇒{A=1B=2
特解: y p = x e 2 x + 2 e 2 x y_p = x e^{2x} + 2 e^{2x} yp=xe2x+2e2x
最后, y = y c + y p = C 1 e 3 x + C 2 x e 3 x + x e 2 x + 2 e 2 x y = y_c + y_p = C_1 e^{3x} + C_2 x e^{3x} + x e^{2x} + 2 e^{2x} y=yc+yp=C1e3x+C2xe3x+xe2x+2e2x
例3: y ′ ′ + 9 y = t 2 sin ( 3 t ) − e t cos ( 3 t ) y'' + 9 y = t^{2} \sin(3t) - e^{t} \cos(3t) y′′+9y=t2sin(3t)−etcos(3t)
通解: y c = C 1 cos ( 3 t ) + C 2 sin ( 3 t ) y_c = C_1 \cos(3t) + C_2 \sin(3t) yc=C1cos(3t)+C2sin(3t)
g ( t ) g(t) g(t) 是由几个函数相乘再相加所得,先要把它拆分开来。
第一部分
g
1
(
t
)
=
t
2
sin
(
3
t
)
g_{1}(t) = t^{2} \sin(3t)
g1(t)=t2sin(3t)是由二次多项式和sine函数相乘所得。特解中要用通用二次多项式、cos和sin函数。
设特解 y p 1 = ( A t 2 + B t + C ) cos ( 3 t ) + ( D t 2 + E t + F ) sin ( 3 t ) y_{p_1} = (At^2 + Bt +C) \cos(3t) + (Dt^2 +Et + F) \sin(3t) yp1=(At2+Bt+C)cos(3t)+(Dt2+Et+F)sin(3t)和通解 y c = C 1 cos ( 3 t ) + C 2 sin ( 3 t ) y_c = C_1 \cos(3t) + C_2 \sin(3t) yc=C1cos(3t)+C2sin(3t) 比较,发现 C cos ( 3 t ) C \cos(3t) Ccos(3t) 和 F sin ( 3 t ) F \sin(3t) Fsin(3t) 和通解有相同项。那么,要在 y p 1 y_{p_1} yp1 现在基础上乘以 t t t 。得, y p 1 = t ( A t 2 + B t + C ) cos ( 3 t ) + t ( D t 2 + E t + F ) sin ( 3 t ) y_{p_1} = t(At^2 + Bt +C) \cos(3t) + t(Dt^2 +Et + F) \sin(3t) yp1=t(At2+Bt+C)cos(3t)+t(Dt2+Et+F)sin(3t) 化简,
y p 1 = ( A t 3 + B t 2 + C t ) cos ( 3 t ) + ( D t 3 + E t 2 + F t ) sin ( 3 t ) y_{p_1} = (At^3 + Bt^2 +Ct) \cos(3t) + (Dt^3 +Et^2 + Ft) \sin(3t) yp1=(At3+Bt2+Ct)cos(3t)+(Dt3+Et2+Ft)sin(3t)再比较,没有相同项了。
第二部分
然后, g 2 ( t ) = − e t cos ( 3 t ) g_{2}(t) = - e^{t} \cos(3t) g2(t)=−etcos(3t)是由指数函数和cos函数相乘所得。特解中要用指数函数、cos和sin函数。
设特解 y p 2 = G e t cos ( 3 t ) + H e t sin ( 3 t ) y_{p_2} = G e^t \cos(3t) + H e^t \sin(3t) yp2=Getcos(3t)+Hetsin(3t) 然后和通解 y c y_c yc 比较,没有相同项。
y p 2 = G e t cos ( 3 t ) + H e t sin ( 3 t ) y_{p_2} = G e^t \cos(3t) + H e^t \sin(3t) yp2=Getcos(3t)+Hetsin(3t)
最后, y = y c + y p 1 + y p 2 y = y_c + y_{p_1} + y_{p_2} y=yc+yp1+yp2
y = C 1 cos ( 3 t ) + C 2 sin ( 3 t ) + ( A t 3 + B t 2 + C t ) cos ( 3 t ) + ( D t 3 + E t 2 + F t ) sin ( 3 t ) + G e t cos ( 3 t ) + H e t sin ( 3 t ) y = C_1 \cos(3t) + C_2 \sin(3t) +(At^3 + Bt^2 +Ct) \cos(3t) +\\ (Dt^3 +Et^2 + Ft) \sin(3t) + G e^t \cos(3t) + H e^t \sin(3t) y=C1cos(3t)+C2sin(3t)+(At3+Bt2+Ct)cos(3t)+(Dt3+Et2+Ft)sin(3t)+Getcos(3t)+Hetsin(3t)
总结
y ′ ′ ( t ) + A y ′ ( t ) + B y ( t ) = g ( t ) , g ( t ) ≠ 0 y''(t)+Ay'(t)+By(t)=g(t),\ \ g(t) \ne 0 y′′(t)+Ay′(t)+By(t)=g(t), g(t)=0
- 如果 g ( t ) g(t) g(t) 中出现指数函数 ( e a t ) (e^{at}) (eat) ,在特解里也要用相同的指数函数。
- 如果 g ( t ) g(t) g(t) 是多项式,在特解里要用通用相同次数的多项式。
- 如果 g ( t ) g(t) g(t) 里出现任意一个cos或者sin函数,特解里要用cos和sin函数。
- 如果 g ( t ) g(t) g(t)是n个函数相加, g ( t ) = g 1 ( t ) + g 2 ( t ) + … + g n ( t ) g(t) = g_{1}(t) + g_{2}(t) + … + g_{n}(t) g(t)=g1(t)+g2(t)+…+gn(t),那么要把方程拆分成n个部分,依次求特解。
- 列出预选的特解,一定要和通解先进行比较。如果预选特解中和通解中出现重复项,那么要在特解上乘以 tt ,直到不再出现重复项。
- 如果 g ( t ) g(t) g(t) 是两个或两个以上函数相乘,那么特解中要用 g ( t ) g(t) g(t) 中每个函数对应的特解相乘来求解。