​​视觉Transformer(二):从稀疏剪枝到跨模态理解​​​​——当视觉模型学会「选择性思考」​

​本篇文章续接:​​视觉Transformer(一):当图像遇见自注意力​​​​——从ViT到EdgeViT的架构进化论​-CSDN博客

一、通俗解释:稀疏化与跨模态的革命​

​1.1 Sparse ViT 核心思想​

​稀疏视觉Transformer​​ 让模型学会「注意力经济」——在推理时动态丢弃冗余图像块(Token),仅处理关键区域。就像人眼快速扫视画面时,​​自动忽略天空/墙壁等背景,聚焦于人脸/文字等高信息区域​​。

​类比理解​

  • ​标准ViT​​:认真阅读整本书(处理全部197个Token)
  • ​Token Pruning​​:快速翻书时跳过空白页(每层丢弃30%-60%低价值Token)
  • ​Token Clustering​​:把相似章节合并成摘要(聚类重复区域为超级Token)
  • ​传统CNN​​:固定阅读路径(卷积核无法动态调整感受野)
​1.2 跨模态ViT核心思想​

​跨模态视觉Transformer​​(如CLIP)让模型打通视觉与语言任督二脉。通过​​对比学习​​使图像和文本在共享空间中对齐——看到猫图时,模型脑中浮现"cat"文本向量,反之亦然。

​类比理解​

  • ​CLIP-ViT​​:多语种导游看图说词(中英日描述同一幅画)
  • ​单模态模型​​:只会方言的本地向导
  • ​零样本分类​​:遇到未知动物时说"这像豹又像狮"(文本引导推理)
​1.3 关键术语解析​
术语解释技术隐喻
​Token剪枝​动态丢弃低重要性图像块摘掉80%树叶观察树枝主干
​Token聚类​合并相似图像块为超级Token把散落米粒聚成饭团
​对比损失​拉近正样本/推远负样本磁铁异性相吸异性相斥
​掩码自编码​遮挡部分图像让模型重建拼图时蒙住50%碎片

​二、应用场景与性能博弈​

​2.1 稀疏ViT的杀手级应用​
  • ​实时视频分析​​:Token剪枝使无人机识别速度↑3倍(1280×720@30FPS→90FPS)
  • ​医疗影像处理​​:聚焦肺结节区域(CT片中95%背景Token被丢弃)
  • ​AR眼镜​​:MobileViT+Token聚类,功耗<500mW(普通眼镜变AI助手)
​2.2 跨模态ViT的突破性应用​
  • ​零样本分类​​:CLIP-ViT识别新物种(文本提示"带斑点的热带鱼"准确率79%)
  • ​无OCR图文检索​​:小红书用BEiT实现"拍封面找同款"
  • ​视频理解​​:VideoMAE预测被遮挡动作(体育比赛60%遮挡仍能识别扣篮)
​2.3 模型能力象限图​
| 计算效率 ↑      | CLIP-ViT         | Sparse ViT     |  
|-----------------|------------------|----------------|  
| 精度 ↑          |                  |                |  
|                 | VideoMAE         | DeiT           |  
|-----------------|------------------|----------------|  
| 训练成本 →      | BEiT(需要掩码预训练) | Token Clustering(免训练) |  

​优势总结​​:
✅ 稀疏ViT:计算量↓50%,延迟↓40%(移动端福音)
✅ 跨模态ViT:零样本泛化能力(打破传统分类边界)
✅ 自监督模型:数据利用效率↑5倍(80%未标注数据可用)

​技术挑战​​:
❌ 剪枝模型:动态路径导致硬件优化困难
❌ CLIP-ViT:文化偏见风险(西方数据训练,亚洲图像识别↓8%)
❌ 视频模型:时空注意力复杂度O(T×N²)(128帧视频↑384倍计算)


​三、模型架构深度探秘​

​3.1 稀疏ViT架构(以Token Pruning为例)​
输入图像 → [分块嵌入] → Token1, Token2, ..., Token196  
    ↓  
[评分网络] → 重要性分数s1,s2,...s196(0-1概率值)  
    ↓  
[阈值筛选] → 保留si>0.3的Token(淘汰70%低分Token)  
    ↓  
[Transformer层1] → 处理剩余59个Token  
    ↓  
[评分网络] → 再次筛选(保留30个)  
    ↓  
...(逐层压缩)...  
    ↓  
[最后12个Token] → 分类输出  

​核心模块详解​​:

  1. ​轻量评分网络​

    • 结构:1层Conv+GeLU+线性层(计算量<0.1%模型总开销)
    • 输入:当前层Token特征
    • 输出:重要性概率(与CLS标记余弦相似度)
  2. ​渐近式剪枝策略​

    层1:196 → 128 Token(丢弃背景)  
    层6:128 → 64 Token(丢弃肢体)  
    层12:64 → 32 Token(聚焦面部)  
  3. ​Token复活机制​

    • 被误删的Token可通过相邻层特征恢复
    • 门控公式:\text{revive} = \sigma(\text{Linear}([F_{t-1}; F_{t+1}]))
​3.2 CLIP-ViT跨模态架构​
图文对数据集  
    ├─ 图像分支 → [ViT编码器] → 图像向量I  
    └─ 文本分支 → [Transformer编码器] → 文本向量T  
        ↓  
[对比学习层]  
    ↓  
   正样本对:↑相似度(I_pos, T_pos)  
   负样本对:↓相似度(I_neg, T_neg)  

​模态交互机制​​:

  1. ​双塔信息流​
    图像塔:ViT输出[CLS]向量 → 投影层 → L2标准化 → I  
    文本塔:文本[CLS]向量 → 同维度投影 → L2标准化 → T  
  2. ​对比损失函数​
    \mathcal{L} = -\log\frac{\exp(I_i^T T_i / \tau)}{\sum_{k=1}^N \exp(I_i^T T_k / \tau)} - \log\frac{\exp(T_i^T I_i / \tau)}{\sum_{k=1}^N \exp(T_i^T I_k / \tau)}
    • \tau:温度系数(控制样本区分度)
    • N:批次内负样本数量(典型值32768)
​3.3 自监督BEiT架构​
输入图像 → [随机掩码] → 遮挡40%图像块  
    ↓  
[ViT编码器] → 学习可见块关系  
    ↓  
[Mask Token预测] → 被遮盖块语义重建  

​掩码策略创新​​:

  • ​块状掩码​​:遮挡16×16块(模仿文本BERT的[MASK])
  • ​语义引导掩码​​:优先遮挡高频区域(如纹理丰富的衣物)
  • ​多视角重建​​:对同一图像生成5种不同掩码模式

​四、模型工作流程深度解析​

​4.1 Sparse ViT工作流(动态Token剪枝)​

​阶段1:全Token初始化处理​
  • ​完整处理前2层​​:模型完整处理所有196个Token(无剪枝)
  • ​浅层特征提取​​:前两层学习基础纹理/边缘特征(类比人眼初步扫描)
​阶段2:动态评分与剪枝​
  • ​评分机制​​(每层执行):
    for 每个Token in 当前层:  
        相似度 = Cosine(CLS_vector, Token_vector)  
        活跃度 = ReLU(Linear(Token_vector))  
        最终分数 = σ(相似度 + 活跃度)  # σ为sigmoid  
  • ​复活机制​​:当相邻Token重要性突变时(如检测到边界),从缓存恢复相关Token
​阶段3:层级递进压缩​
网络深度Token保留率聚焦目标
第1-2层100%整体结构
第3-6层40-60%主体对象
第7-12层15-30%关键细节
  • ​最终输出​​:CLS标记聚合最后12-30个Token的信息完成分类

​4.2 CLIP跨模态训练流程​

​图文对预处理​

  • ​图像增强​​:随机裁剪+颜色抖动(224×224输入)
  • ​文本处理​​:76词截断,特殊标记[STA]/[END]
​双塔特征对齐​

  • ​投影层结构​​:
    图像投影:768D → 1024D (GeLU) → 512D  
    文本投影:512D → 1024D (GeLU) → 512D  
​对比学习优化​
  • ​批次内负采样​​:单批次4096个图文对构成17.8M负样本
  • ​温度系数调节​​:自动学习τ参数控制样本区分度

​4.3 BEiT自监督训练流程​

​语义掩码生成​

  • ​频率导向掩码​​:
    def mask_policy(patches):  
      high_freq = detect_edges(patches)  # 边缘检测  
      return sample(high_freq, ratio=0.4) # 优先选高频区  
​编码-解码重建​
编码器输入: [可见块1, 可见块2, ..., [MASK], ...]  
               ↓  
        ViT编码器 (12层)  
               ↓  
解码器输入: [MASK]位置 + 位置编码  
               ↓  
        轻量Transformer解码器  
               ↓  
   预测被遮盖块的dVAE编码  
  • ​dVAE编码​​:将16×16块压缩为8192种离散Token

​五、关键数学原理源码实现​

​5.1 Token重要性评分公式​

​5.2 CLIP对比损失函数​

​5.3 BEiT掩码重建目标​

其中:

  • \mathcal{M}:被掩码块位置集合
  • q_\phi:dVAE编码器输出的分布
  • \mathbf{d}_\theta:ViT解码器预测

​5.4 Token聚类数学表达​

​5.5 VideoMAE时间掩码​

掩码覆盖>90%时空块,保留<10%可见块作为线索

六、PyTorch实战代码

6.1 Sparse ViT动态剪枝实现

import torch  
import torch.nn as nn  
from torch.nn import functional as F  

class TokenScorer(nn.Module):  
    def __init__(self, dim):  
        super().__init__()  
        self.mlp = nn.Sequential(  
            nn.Linear(dim, dim//4),  
            nn.GELU(),  
            nn.Linear(dim//4, 1)  
        )  
        
    def forward(self, x, cls_token):  
        # 计算基于CLS的相似度  
        sim = F.cosine_similarity(x, cls_token, dim=-1, eps=1e-6)  
        # 学习局部重要性  
        local_score = torch.sigmoid(self.mlp(x)).squeeze()  
        # 综合评分  
        return 0.6*sim + 0.4*local_score  

class SparseViTLayer(nn.Module):  
    def __init__(self, dim, num_heads, prune_ratio=0.4):  
        super().__init__()  
        self.attn = nn.MultiheadAttention(dim, num_heads)  
        self.mlp = nn.Sequential(  
            nn.Linear(dim, 4*dim),  
            nn.GELU(),  
            nn.Linear(4*dim, dim)  
        )  
        self.norm1 = nn.LayerNorm(dim)  
        self.norm2 = nn.LayerNorm(dim)  
        self.scorer = TokenScorer(dim)  
        self.prune_ratio = prune_ratio  

    def forward(self, x, cls_token):  
        # 令牌评分  
        scores = self.scorer(x, cls_token)  
        # 按评分排序  
        sorted_idx = torch.argsort(scores, descending=True)  
        keep_num = int(x.size(0) * (1 - self.prune_ratio))  
        keep_idx = sorted_idx[:keep_num]  
        
        # 稀疏注意力  
        sparse_x = x[keep_idx]  
        attn_out = self.attn(  
            query=sparse_x, key=sparse_x, value=sparse_x  
        )[0]  
        attn_out = self.norm1(attn_out + sparse_x)  
        
        # MLP处理  
        mlp_out = self.mlp(attn_out)  
        sparse_out = self.norm2(mlp_out + attn_out)  
        
        # 重建完整序列  
        full_out = torch.zeros_like(x)  
        full_out[keep_idx] = sparse_out  
        return full_out, scores  

6.2 CLIP的HuggingFace调用

from transformers import CLIPProcessor, CLIPModel  
from PIL import Image  

# 加载模型  
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")  
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")  

# 准备输入  
image = Image.open("park.jpg")  
texts = ["a dog in the park", "children playing", "green trees", "park bench"]  

# 处理输入  
inputs = processor(  
    text=texts,  
    images=image,  
    return_tensors="pt",  
    padding=True  
)  

# 模型推理  
with torch.no_grad():  
    outputs = model(**inputs)  
    logits_per_image = outputs.logits_per_image  # 图像-文本相似度  
    probs = logits_per_image.softmax(dim=1)  

# 输出结果  
for text, prob in zip(texts, probs.squeeze().tolist()):  
    print(f"{text}: {prob*100:.1f}%")  

6.3 BEiT的HuggingFace调用

from transformers import BeitFeatureExtractor, BeitForMaskedImageModeling  
import torch  

# 加载模型  
model = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k')  
feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-patch16-224-pt22k')  

# 准备输入  
image = Image.open("building.jpg")  
inputs = feature_extractor(images=image, return_tensors="pt")  

# 随机掩码  
mask = torch.rand_like(inputs.pixel_values) > 0.85  
inputs["bool_masked_pos"] = mask  

# 模型预测  
with torch.no_grad():  
    outputs = model(**inputs)  
    logits = outputs.logits  # 重建预测结果  

# 可视化重建效果  
reconstructed = feature_extractor.post_process(logits[0])  

总结:视觉Transformer的进化革命

技术突破亮点

  1. ​稀疏动态计算​

    • Token剪枝实现推理加速3-5倍(72%冗余Token可丢弃)
    • 硬件感知设计使移动端ViT延迟<10ms(EdgeViT)
  2. ​跨模态统一架构​

    • CLIP实现图文语义对齐(40亿参数模型识别1.8万类)
    • 零样本能力颠覆传统分类范式
  3. ​自监督新范式​

    • BEiT掩码重建使数据效率↑300%
    • VideoMAE视频模型用1%标记数据达全监督精度

核心算法演进

技术方向代表算法突破点
稀疏计算DynamicViT学习型令牌重要性评估
EViT硬件感知稀疏加速
跨模态ALIGN超大规模图文对比
Florence通用视觉表征模型
自监督MaskFeatHOG特征重建
MAE80%掩码率预训练

未来发展方向

  1. ​神经-符号融合​

    • 将逻辑规则注入Transformer(符号引导的注意力)
  2. ​三维视觉理解​

    • 点云Transformer (Point-BERT)
    • 神经辐射场优化 (NeRF-ViT)
  3. ​生物启发架构​

    • 脉冲神经网络融合 (Spiking-ViT)
    • 视网膜感知注意力机制

​终极愿景​​:视觉Transformer正在演进为通用感知引擎。未来的视觉模型将兼具物理世界的理解力、人类级别的认知效率,以及多模态无缝交互能力,成为真正意义上的「机器之眼」。从像素到语义,从静态到动态,从识别到创造——视觉智能的革命才刚刚开始。

剪枝是一种用于减少神经网络模型规模和计算量的技术。对于Swin Transformer模型剪枝,我可以根据引用内容给出一些解释。 根据引用,Swin Transformer相比于传统的CNN模型,在精度和速度方面有了显著提升。然而,如果需要进一步减少模型的规模和计算量,剪枝是一个可行的方法。 引用提到Swin Transformer吸收了CNN的一些优点,并形成了对CNN的降维打击。这意味着在剪枝过程中,可以考虑使用一些针对CNN模型剪枝技术。 具体到Swin Transformer模型剪枝方法,由于没有提供具体的引用内容,我无法给出详细的剪枝步骤。然而,一般的剪枝方法可以分为结构剪枝和权重剪枝两种。 结构剪枝是指通过删除模型中的一些结构单元来减少模型规模。例如,可以基于模型稀疏性来删除一些不重要的连接或层。在Swin Transformer中,可以考虑删除一些不重要的分块或注意力头来减少模型的大小。 权重剪枝是指通过对模型参数进行剪枝来减少模型规模。例如,可以根据参数的重要度或敏感度来删除一些冗余的权重。在Swin Transformer中,可以根据注意力头的权重或分块的权重来进行剪枝操作。 总结来说,剪枝是一种可以用于减少Swin Transformer模型规模和计算量的技术。具体的剪枝方法可以根据模型的特点和需求选择合适的结构剪枝或权重剪枝方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值