matlab计算基础
2.7 复数和复变函数
复数运算基础
- 复数的表示
syms a b real;%声明a,b为实数型
x3=a+b*i;
subs(x3,{a,b},{-1,1}) %将字母替代为具体数值
- 复数矩阵的表示
- 直接创建:
- 由复数元素构造复数矩阵
- 利用两个矩阵分别做实部和虚部构造新的复数矩阵
- 复数绘图
- 直角坐标图
- 极坐标图
t=0:0.05:2*pi;
y=t+i*t.*sin(t);
r=abs(y);
theta=angle(y);
subplot(1,2,1);
plot(y) %直角坐标形式 对于复数,只能有一个输入参数,以实部为横坐标,虚部为纵坐标
subplot(1,2,2)
polarplot(theta,r)
- 复数的结构操作函数
- 留数及其基本运算
拉普拉斯变换及反变换
- 符号变量说明
syms a b
syms a b datatype
其中datatype可为实型(real)、整型(positive)、非实型(unreal)
- 正变换
- 反变换
Z变换及其反变换
- 需要强调的是,适用于离散信号
- ztrans
- iztrans
- 在编程中发现:
需要定义离散信号所需的变量
同时对于变量的大小写也有要求
syms n a w k z T
x1=ztrans(n*T)
x1=simplify(x1)
-
注意要将函数进行离散化处理
%% 求拉氏变换的Z变换
syms T a b t1 t2 t3 s n
F1=1/(s*(s+1));
F2=s/(s^2+a^2);
F3=(a-b)/((s+a)*(s+b));
x1=ilaplace(F1,t1);
x1=simplify(x1);%可以对符号表达式进行简化
x2=ilaplace(F2,t2);
x2=simplify(x2)%可以对符号表达式进行简化
x3=ilaplace(F3,t3);
x3=simplify(x3)%可以对符号表达式进行简化
%进行Z变换时,记住把时间参数t都替换成n*T
x1=ztrans(1-exp(-n*T))