目标追踪deepsort ByteTrack

DeepSORT是一种基于深度学习的多目标跟踪算法,它结合了深度学习特征提取和卡尔曼滤波,通过匈牙利算法进行目标匹配,解决了SORT算法中身份变换的问题,提高了跟踪的准确性和稳定性。此外,ByteTrack是另一个改进的跟踪算法,特别关注低分检测框的处理,增强了对遮挡物体的跟踪能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多目标跟踪算法:DeepSort

https://arxiv.org/pdf/1703.07402.pdf
https://github.com/ZQPei/deep_sort_pytorch

DeepSORT(Deep Learning-based SORT)是一种基于深度学习的多目标跟踪算法,用于在视频序列中跟踪多个目标并进行身份识别。它是SORT(Simple Online and Realtime Tracking)算法的扩展,可以处理遮挡、运动模糊和光照变化等复杂情况,因此在视频监控、交通管理和人员追踪等领域得到广泛应用。

DeepSORT基于卷积神经网络(CNN)和循环神经网络(RNN)等深度学习模型,可以从目标检测框中提取出目标的特征表示,并通过匈牙利算法和卡尔曼滤波等多种跟踪技术,对多个目标进行跟踪和身份识别。具体来说,DeepSORT包括以下几个步骤:

  1. 目标检测:使用目标检测算法(如YOLO、Faster R-CNN等)从视频帧中检测出所有目标,并生成对应的边界框。

  2. 目标特征提取:使用CNN等深度学习模型从每个目标的边界框中提取出特征向量,并将其输入到RNN中进行序列建模。

  3. 目标匹配:使用匈牙利算法计算两帧之间的目标匹配关系,并根据目标特征向量的相似度和卡尔曼滤波预测结果来确定匹配结果。

  4. 身份管理:为每个跟踪目标分配一个唯一的ID,并在跟踪过程中将其与先前的跟踪结果进行比较,以确保ID的唯一性和一致性。

DeepSORT通过融合深度学习和传统跟踪技术,可以实现高效、准确和稳定的多目标跟踪和身份识别,因此在实际应用中具有广泛的应用前景。

多目标追踪的主要步骤

  • 获取原始视频帧;
  • 利用目标检测器对视频帧中的目标进行检测;
  • 将检测到的目标的框中的特征提取出来,该特征包括表观特征(方便特征对比避免ID switch)和运动特征(运动特征方便卡尔曼滤波对其进行预测);
  • 计算前后两帧目标之前的匹配程度(利用匈牙利算法和级联匹配),为每个追踪到的目标分配ID。

Sort 算法原理

  • 卡尔曼滤波算法

该算法的主要作用就是当前的一系列运动变量去预测下一时刻的运动变量,但是第一次的检测结果用来初始化卡尔曼滤波的运动变量。

  • 匈牙利算法

简单来讲就是解决分配问题,就是把一群检测框和卡尔曼预测的框做分配,让卡尔曼预测的框找到和自己最匹配的检测框,达到追踪的效果。
在这里插入图片描述
Detections是目标检测框
Tracks是轨迹信息(外观特征和运动信息)

什么是重识别(ReID)?

重识别(ReID)是一种计算机视觉任务,旨在识别不同位置、时间或摄像机中的同一对象。它通常应用于视频监控、人员管理和公共安全等领域。

在ReID中,模型需要从给定的图像或视频序列中提取出人物的特征向量,并将其与一个已知的人物数据库进行匹配,以确定该人物在数据库中的身份。与传统的人脸识别不同,ReID需要处理全身图像,因此需要考虑姿态、服装、光照等因素。

ReID通常包括以下几个步骤:

  1. 特征提取:使用深度学习模型(如ResNet、DenseNet等)从图像中提取出人物的特征向量。

  2. 特征匹配:使用一些度量方法(如欧氏距离、余弦相似度等)计算两个特征向量之间的相似度,并将其与一个已知的数据库进行比较。

  3. 单目标跟踪(可选):使用目标跟踪算法(如卡尔曼滤波、匈牙利算法等)跟踪单个目标,并在多个摄像机之间进行跨摄像机重识别。

  4. 多目标跟踪(可选):将单目标跟踪扩展到多个目标,以处理多人情况。

近年来,随着深度学习的发展,ReID已经取得了显著的进展,并在许多实际应用中得到了广泛应用。
上一帧
在这里插入图片描述当前帧
在这里插入图片描述

什么是身份变换(IDswitch)?

在目标追踪中引入身份变换(IDswitch)是一种常见的技术,它可以实现目标的身份变换,从而应对目标在追踪过程中的遮挡、离开视野等问题。身份变换可以用于多种目标追踪场景,例如视频监控、智能交通和机器人导航等领域。

身份变换的实现通常包括以下几个步骤:

  1. 目标检测:使用目标检测算法(如YOLO、Faster R-CNN等)从视频帧中检测出目标,并生成对应的边界框。

  2. 目标跟踪:使用目标跟踪算法(如KCF、MOSSE等)追踪目标,并根据目标位置和运动状态等信息对目标进行预测。

  3. 身份变换:根据目标特征表示(如人脸特征、颜色特征等),将目标的身份进行变换。这通常需要使用图像合成技术(如身份变换、图像融合等)将目标的特征表示与目标图像进行融合,从而实现身份变换的效果。

  4. 身份管理:为每个目标分配一个唯一的ID,并在跟踪过程中将其与先前的跟踪结果进行比较,以确保ID的唯一性和一致性。

需要注意的是,身份变换技术可能存在一些误差和局限性,例如人脸姿态变化、光照变化和遮挡等问题。因

### SORT、DeepSORT ByteTrack 对比 #### 1. 基本原理 - **SORT (Simple Online and Realtime Tracking)** 是一种简单高效的多目标跟踪算法,主要依靠卡尔曼滤波器来预测对象的位置,并通过匈牙利算法匹配检测框与轨迹。然而,由于缺乏对外观特征的学习能力,在遮挡情况下容易丢失目标[^2]。 ```python from sort import Sort mot_tracker = Sort(max_age=1, min_hits=3) detections = [[x1,y1,x2,y2,score], ...] trackers = mot_tracker.update(detections) ``` - **DeepSORT** 则是在 SORT 的基础上引入了深度学习技术,利用卷积神经网络提取目标的外观特征向量,从而提高了重识别的能力,尤其适合处理长时间遮挡的情况。此外,还改进了距离度量方式以及数据关联策略,使得整体性能更加稳定可靠。 ```python import numpy as np from deep_sort import nn_matching from deep_sort.detection import Detection from deep_sort.tracker import Tracker metric = nn_matching.NearestNeighborDistanceMetric("cosine", max_cosine_distance=0.2) tracker = Tracker(metric) for det in detections: detection = Detection(bbox=[det[:4]], confidence=det[-1]) tracker.predict() tracker.update([detection]) ``` - **ByteTrack** 结合了单阶段检测器 YOLOX 强关联机制,采用自适应卡方测试筛选高质量候选区域,并设计了一套完整的在线联合优化框架,实现了端到端训练。相比前两者,它不仅具备更高的精度鲁棒性,而且能够更好地应对大规模人群场景下的密集交互现象[^1]。 ```python from yolox.tracking.byte_track import BYTETracker byte_tracker = BYTETracker(frame_rate=30) online_targets = byte_tracker.update(det_output, img_info=img.shape[2:]) ``` #### 2. 应用场景 - 当面对计算资源有限且实时性要求较高的场合时,可以选择 **SORT** ,尽管其准确性可能稍逊一筹;如果希望获得更好的追踪效果而不必过分担心速度问题,则推荐使用 **DeepSORT** 。对于那些需要处理极其复杂的动态环境并追求极致表现的应用来说,**ByteTrack** 显然是最佳选项之一。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值