论文阅读《RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching》

该文介绍了一种使用RAFT光流估计网络改进的双目立体匹配模型,通过多级卷积GRU模块传播全局信息。模型包括特征提取、相关性匹配代价体构建和多层级更新策略,实现了在不同尺度上优化视差估计,增强了对弱纹理区域的适应性。实验结果显示,该方法在立体匹配任务上取得了良好效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文地址:https://arxiv.org/abs/2109.07547
源码地址:https://github.com/princeton-vl/RAFT-Stereo


概述

  本文提出了一种适用于双目立体匹配的模型架构,基于光流估计网络RAFT,通过使用多级卷积GRU模块来在图像传播全局信息,并取得了不错的实验结果;


模型架构

在这里插入图片描述
  对于给定的输入图像对 I L 、 I R I_L、I_R ILIR,模型主要包含以下三个步骤: 使用权值共享的CNN提取特征、构建相关性匹配代价体金字塔、使用GRU模型来从关联性金字塔中抽取特征,并对视差图进行更新。

特征提取

  左右视图的图像经过特征提取器得到原图大小 1 4 H × 1 4 W × C  与  1 8 H × 1 8 W × C \frac{1}{4}H\times \frac{1}{4}W\times C \ 与 \ \frac{1}{8}H\times \frac{1}{8}W\times C 41H×41W×C  81H×81W×C 的feature Map,特征图用于构建correlation Volume。在Encoder部分使用 Instance Normalizaition
  Context Encoder 使用类似的结构对 I L I_L IL 处理得到内容特征图,一部分用于初始化GRU模块的隐藏状态(对应代码中的net_list),一部分作为上下文信息特征(对应代码中的inp_list) 。

相关性金字塔

相关性代价体

  使用特征向量的点积来衡量两者之间的相似度,对于左右视图提取的特征图 f , g ∈ R H × W × D f,g \in R^{H\times W\times D} f,gRH×W×D,在不同视差下计算对应点之间的匹配度,得到匹配代价体 C ∈ R H ∗ W ∗ W C \in R^{H * W * W} CRHWW ,如式1所示:
C i j k = ∑ h f i j h ⋅ g i k h ,   C ∈ R H ∗ W ∗ W (1) C_{i j k}=\sum_{h} f_{i j h} \cdot g_{i k h},\ C \in R^{H * W * W}\tag1 Cijk=hfijhgikh, CRHWW(1)
注:在光流估计中没有视差的概念,实际是在水平方向上都计算像素间的相关性,得到一个代价体,因此可以看作视差的范围为W

相关性金字塔

  得到了相关性代价体 C ∈ R H ∗ W ∗ W C \in R^{H * W * W} CRHWW 后,在最后一个维度上不断下采样,构建相关性代价体金字塔;其中第 k 层的代价体为 C k ∈ R H ∗ W ∗ W 2 k C_k \in R^{H * W * \frac{W}{2^k}} CkRHW2kW,每一层代价体都拥有不同的感受野;

Correlation Lookup

在这里插入图片描述
  文中定义了一种查找算子,对于某个像素点p与该点当前预测的视差值d,在每个level上的视差维度上以[d-r, d-r+1,…0, …d+r]来采样匹配值,最后将所有levle的匹配值cconcat得到一个新的correlation features ∈ R b × ( 2 r + 1 ) ∗ l e v e l × h × w \in R^{b\times (2r+1)*level\times h\times w} Rb×(2r+1)level×h×w。( c 1 c_1 c1 感受野较小,进行小范围视差搜索, c 3 c_3 c3 感受野较大,进行大范围视差搜索 )

多层级更新策略

  原始的RAFT只在单一尺度上进行视差优化,本文提出多级迭代优化策略用于增强模型对弱纹理区域的适应性:
在这里插入图片描述
此部分有点复杂,结合代码讲解,包含以下步骤:

  1. 使用 1 / 32 1/32 1/32 尺度下 GRU 状态特征、 1 / 32 1/32 1/32 尺度下的图像特征、 与 1 / 16 1/16 1/16 尺度下的GRU状态特征送入gru32的Conv模块中,更新当前level下的GRU状态特征;
  2. 使用 1 / 16 1/16 1/16 尺度下 GRU 状态特征、 1 / 16 1/16 1/16尺度下的图像特征、与 1 / 8 1/8 1/8 尺度下的GRU状态特征送入到gru16的Conv模块中,更新当前level下的GRU状态特征;
  3. 使用关联特征和初始的flow送入融合CNN,得到motion feature,使用 1 / 8 1/8 1/8 尺度下 GRU 状态特征、 motion feature在与 1 / 8 1/8 1/8尺度下的图像特征送入二维GRU模块更新该level下的GRU状态特征;
  4. 将GRU隐藏状态特征送入CNN中得到光流偏移量;
    def forward(self, net, inp, corr=None, flow=None, iter08=True, iter16=True, iter32=True, update=True):
		# net : GRU state feature list
		# inp : img feature list
        if iter32:
            net[2] = self.gru32(net[2], *(inp[2]), pool2x(net[1]))
        if iter16:
            if self.args.n_gru_layers > 2:
                net[1] = self.gru16(net[1], *(inp[1]), pool2x(net[0]), interp(net[2], net[1]))
            else:
                net[1] = self.gru16(net[1], *(inp[1]), pool2x(net[0]))
        if iter08:

            motion_features = self.encoder(flow, corr)
            if self.args.n_gru_layers > 1:
                net[0] = self.gru08(net[0], *(inp[0]), motion_features, interp(net[1], net[0]))
            else:
                net[0] = self.gru08(net[0], *(inp[0]), motion_features)

        if not update:
            return net
        # caculate the delta_flow in high resolution scale
        delta_flow = self.flow_head(net[0])

  通过多层级更新策略可以同时更新不同尺度下的GRU隐藏状态向量,多个单元之间的信息相互传递,增加了特征的感受野;使用大分辨率的特征图进行多尺度Conv-GRU迭代会带来较大的计算开销,对此文章引入了Slow-Fast GRU,即大尺度特征处的GRU更新一次,对应小尺度特征处的GRU更新多次。


损失函数

L = ∑ i = 1 N γ N − i ∥ d g t − d i ∥ 1 ,  where  γ = 0.9 (2) \mathcal{L}=\sum_{i=1}^{N} \gamma^{N-i}\left\|\mathbf{d}_{g t}-\mathbf{d}_{i}\right\|_{1}, \quad \text { where } \gamma=0.9\tag2 L=i=1NγNidgtdi1, where γ=0.9(2)


实验结果

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CV科研随想录

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值