100道积分公式证明(31-40)

索引

含有 x 2 ± a 2 ,   a > 0 \sqrt[{}]{{{x}^{2}}\pm {{a}^{2}}},\text{ }a>0 x2±a2 , a>0的形式

31. ∫ 1 x 2 ± a 2 d x = ln ⁡ ∣ x + x 2 ± a 2 ∣ + C \int_{{}}^{{}}{\frac{1}{\sqrt[{}]{{{x}^{2}}\pm {{a}^{2}}}}dx}=\ln \left| x+\sqrt[{}]{{{x}^{2}}\pm {{a}^{2}}} \right|+C x2±a2 1dx=lnx+x2±a2 +C

证明:

  1. x = a tan ⁡ t ,   t ∈ ( − π 2 , π 2 ) x=a\tan t,\text{ }t\in \left( -\frac{\pi }{2},\frac{\pi }{2} \right) x=atant, t(2π,2π),则有
    ∫ 1 x 2 + a 2 d x = ∫ 1 a 2 sec ⁡ 2 t d ( a tan ⁡ t ) = ∫ 1 ( a sec ⁡ t ) ( a sec ⁡ 2 t ) d t   ( a > 0 ,   sec ⁡ t > 0 ) = ∫ sec ⁡ t d t = ln ⁡ ∣ sec ⁡ t + tan ⁡ t ∣ + C 1 = ln ⁡ ∣ a 2 + x 2 a + x a ∣ + C 1 = ln ⁡ ∣ x + x 2 + a 2 ∣ + C 2 \begin{aligned} & \int{\frac{1}{\sqrt{{{x}^{2}}+{{a}^{2}}}}dx}=\int_{{}}^{{}}{\frac{1}{\sqrt[{}]{{{a}^{2}}{{\sec }^{2}}t}}d\left( a\tan t \right)} \\ & =\int_{{}}^{{}}{\frac{1}{\left( a\sec t \right)}\left( a{{\sec }^{2}}t \right)dt}\text{ }\left( a>0,\text{ }\sec t>0 \right) \\ & =\int{\sec tdt} \\ & =\ln |\sec t+\tan t|+{{C}_{1}} \\ & =\ln |\frac{\sqrt{{{a}^{2}}+{{x}^{2}}}}{a}+\frac{x}{a}|+{{C}_{1}} \\ & =\ln |x+\sqrt{{{x}^{2}}+{{a}^{2}}}|+{{C}_{2}} \\ \end{aligned} x2+a2 1dx=a2sec2t 1d(atant)=(asect)1(asec2t)dt (a>0, sect>0)=sectdt=lnsect+tant+C1=lnaa2+x2 +ax+C1=lnx+x2+a2 +C2

  2. x = a sec ⁡ t ,   t ∈ ( 0 , π 2 ) ⋃ ( π , 3 π 2 ) x=a\sec t,\text{ }t\in \left( 0,\frac{\pi }{2} \right)\bigcup \left( \pi ,\frac{3\pi }{2} \right) x=asect, t(0,2π)(π,23π),则有
    ∫ 1 x 2 − a 2 d x = ∫ 1 a 2 tan ⁡ 2 t d ( a sec ⁡ t ) = ∫ 1 ( a tan ⁡ t ) ( a sec ⁡ t tan ⁡ t ) d t   ( a > 0 ,   tan ⁡ t > 0 ) = ∫ sec ⁡ t d t = ln ⁡ ∣ sec ⁡ t + tan ⁡ t ∣ + C 3 = ln ⁡ ∣ x a + x 2 − a 2 a ∣ + C 3 = ln ⁡ ∣ x + x 2 − a 2 ∣ + C 4 \begin{aligned} & \int{\frac{1}{\sqrt{{{x}^{2}}-{{a}^{2}}}}dx}=\int_{{}}^{{}}{\frac{1}{\sqrt[{}]{{{a}^{2}}{{\tan }^{2}}t}}d\left( a\sec t \right)} \\ & =\int_{{}}^{{}}{\frac{1}{\left( a\tan t \right)}\left( a\sec t\tan t \right)dt}\text{ }\left( a>0,\text{ }\tan t>0 \right) \\ & =\int{\sec tdt} \\ & =\ln |\sec t+\tan t|+{{C}_{3}} \\ & =\ln |\frac{x}{a}+\frac{\sqrt{{{x}^{2}}-{{a}^{2}}}}{a}|+{{C}_{3}} \\ & =\ln |x+\sqrt{{{x}^{2}}-{{a}^{2}}}|+{{C}_{4}} \\ \end{aligned} x2a2 1dx=a2tan2t 1d(asect)=(atant)1(asecttant)dt (a>0, tant>0)=sectdt=lnsect+tant+C3=lnax+ax2a2 +C3=lnx+x2a2 +C4

32. ∫ x 2 x 2 ± a 2 d x = 1 2 ( x x 2 ± a 2 ∓ a 2 ln ⁡ ∣ x + x 2 ± a 2 ∣ ) + C \int_{{}}^{{}}{\frac{{{x}^{2}}}{\sqrt[{}]{{{x}^{2}}\pm {{a}^{2}}}}dx}=\frac{1}{2}\left( x\sqrt[{}]{{{x}^{2}}\pm {{a}^{2}}}\mp {{a}^{2}}\ln \left| x+\sqrt[{}]{{{x}^{2}}\pm {{a}^{2}}} \right| \right)+C x2±a2 x2dx=21(xx2±a2 a2lnx+x2±a2 )+C

证明:

  1. x = a tan ⁡ t ,   t ∈ ( − π 2 , π 2 ) x=a\tan t,\text{ }t\in \left( -\frac{\pi }{2},\frac{\pi }{2} \right) x=atant, t(2π,2π),则有
    ∫ x 2 x 2 + a 2 d x = ∫ ( a tan ⁡ t ) 2 a 2 sec ⁡ 2 t d ( a tan ⁡ t ) = ∫ ( a tan ⁡ t ) 2 ( a sec ⁡ t ) ( a sec ⁡ 2 t ) d t   ( a > 0 ,   sec ⁡ t > 0 ) = a 2 ∫ tan ⁡ 2 t sec ⁡ t d t = a 2 ∫ tan ⁡ t d ( sec ⁡ t ) = a 2 [ sec ⁡ t tan ⁡ t − ∫ sec ⁡ 3 t d t ] = a 2 [ sec ⁡ t tan ⁡ t − ∫ ( tan ⁡ 2 t + 1 ) sec ⁡ t d t ] = a 2 [ sec ⁡ t tan ⁡ t − ∫ tan ⁡ t d ( sec ⁡ t ) − ∫ sec ⁡ t d t ] \begin{aligned} & \int{\frac{{{x}^{2}}}{\sqrt{{{x}^{2}}+{{a}^{2}}}}dx}=\int_{{}}^{{}}{\frac{{{\left( a\tan t \right)}^{2}}}{\sqrt[{}]{{{a}^{2}}{{\sec }^{2}}t}}d\left( a\tan t \right)} \\ & =\int_{{}}^{{}}{\frac{{{\left( a\tan t \right)}^{2}}}{\left( a\sec t \right)}\left( a{{\sec }^{2}}t \right)dt}\text{ }\left( a>0,\text{ }\sec t>0 \right) \\ & ={{a}^{2}}\int{{{\tan }^{2}}t\sec tdt} \\ & ={{a}^{2}}\int{\tan td\left( \sec t \right)} \\ & ={{a}^{2}}\left[ \sec t\tan t-\int{{{\sec }^{3}}tdt} \right] \\ & ={{a}^{2}}\left[ \sec t\tan t-\int{\left( {{\tan }^{2}}t+1 \right)\sec tdt} \right] \\ & ={{a}^{2}}\left[ \sec t\tan t-\int{\tan td(\sec t)-\int{\sec tdt}} \right] \\ \end{aligned} x2+a2 x2dx=a2sec2t (atant)2d(atant)=(asect)(atant)2(asec2t)dt (a>0, sect>0)=a2tan2tsectdt=a2tantd(sect)=a2[secttantsec3tdt]=a2[secttant(tan2t+1)sectdt]=a2[secttanttantd(sect)sectdt]
    ⇒ ∫ tan ⁡ t d ( sec ⁡ t ) = 1 2 [ sec ⁡ t tan ⁡ t − ∫ sec ⁡ t d t ] = 1 2 [ sec ⁡ t tan ⁡ t − ln ⁡ ∣ sec ⁡ t + tan ⁡ t ∣ ] + C 1 = 1 2 [ x 2 + a 2 a x a − ln ⁡ ∣ x 2 + a 2 a + x a ∣ ] + C 1 = 1 2 [ x x 2 + a 2 a 2 − ln ⁡ ∣ x + x 2 + a 2 ∣ ] + C 2 \begin{aligned} & \Rightarrow \int{\tan td(\sec t)}=\frac{1}{2}\left[ \sec t\tan t-\int{\sec tdt} \right] \\ & =\frac{1}{2}\left[ \sec t\tan t-\ln \left| \sec t+\tan t \right| \right]+{{C}_{1}} \\ & =\frac{1}{2}\left[ \frac{\sqrt{{{x}^{2}}+{{a}^{2}}}}{a}\frac{x}{a}-\ln \left| \frac{\sqrt{{{x}^{2}}+{{a}^{2}}}}{a}+\frac{x}{a} \right| \right]+{{C}_{1}} \\ & =\frac{1}{2}\left[ \frac{x\sqrt{{{x}^{2}}+{{a}^{2}}}}{{{a}^{2}}}-\ln \left| x+\sqrt{{{x}^{2}}+{{a}^{2}}} \right| \right]+{{C}_{2}} \\ \end{aligned} tantd(sect)=21[secttantsectdt]=21[secttantlnsect+tant]+C1=21[ax2+a2 axlnax2+a2 +ax]+C1=21[a2xx2+a2 lnx+x2+a2 ]+C2
    ⇒ ∫ x 2 x 2 + a 2 d x = a 2 ∫ tan ⁡ t d ( sec ⁡ t ) = 1 2 ( x x 2 + a 2 − a 2 ln ⁡ ∣ x + x 2 + a 2 ∣ ) + C \begin{aligned} & \Rightarrow \int{\frac{{{x}^{2}}}{\sqrt{{{x}^{2}}+{{a}^{2}}}}dx}={{a}^{2}}\int{\tan td(\sec t)} \\ & =\frac{1}{2}\left( x\sqrt{{{x}^{2}}+{{a}^{2}}}-{{a}^{2}}\ln \left| x+\sqrt{{{x}^{2}}+{{a}^{2}}} \right| \right)+C \\ \end{aligned} x2+a2 x2dx=a2tantd(sect)=21(xx2+a2 a2lnx+x2+a2 )+C

  2. x = a sec ⁡ t ,   t ∈ ( 0 , π 2 ) ⋃ ( π , 3 π 2 ) x=a\sec t,\text{ }t\in \left( 0,\frac{\pi }{2} \right)\bigcup \left( \pi ,\frac{3\pi }{2} \right) x=asect, t(0,2π)(π,23π),则有
    ∫ x 2 x 2 − a 2 d x = ∫ ( a sec ⁡ t ) 2 a 2 tan ⁡ 2 t d ( a sec ⁡ t ) = ∫ ( a sec ⁡ t ) 2 ( a tan ⁡ t ) ( a sec ⁡ t tan ⁡ t ) d t   ( a > 0 ,   tan ⁡ t > 0 ) = a 2 ∫ sec ⁡ 3 t d t = a 2 ∫ sec ⁡ t d ( tan ⁡ t ) = a 2 [ sec ⁡ t tan ⁡ t − ∫ tan ⁡ 2 t sec ⁡ t d t ] = a 2 [ sec ⁡ t tan ⁡ t − ∫ ( sec ⁡ 2 t − 1 ) sec ⁡ t d t ] = a 2 [ sec ⁡ t tan ⁡ t − ∫ sec ⁡ 3 t d t + ∫ sec ⁡ t d t ] \begin{aligned} & \int{\frac{{{x}^{2}}}{\sqrt{{{x}^{2}}-{{a}^{2}}}}dx}=\int_{{}}^{{}}{\frac{{{\left( a\sec t \right)}^{2}}}{\sqrt[{}]{{{a}^{2}}{{\tan }^{2}}t}}d\left( a\sec t \right)} \\ & =\int_{{}}^{{}}{\frac{{{\left( a\sec t \right)}^{2}}}{\left( a\tan t \right)}\left( a\sec t\tan t \right)dt}\text{ }\left( a>0,\text{ }\tan t>0 \right) \\ & ={{a}^{2}}\int{{{\sec }^{3}}t}dt \\ & ={{a}^{2}}\int{\sec td\left( \tan t \right)} \\ & ={{a}^{2}}\left[ \sec t\tan t-\int{{{\tan }^{2}}t\sec tdt} \right] \\ & ={{a}^{2}}\left[ \sec t\tan t-\int{\left( {{\sec }^{2}}t-1 \right)\sec tdt} \right] \\ & ={{a}^{2}}\left[ \sec t\tan t-\int{{{\sec }^{3}}t}dt+\int{\sec t}dt \right] \\ \end{aligned} x2a2 x2dx=a2tan2t (asect)2d(asect)=(atant)(asect)2(asecttant)dt (a>0, tant>0)=a2sec3tdt=a2sectd(tant)=a2[secttanttan2tsectdt]=a2[secttant(sec2t1)sectdt]=a2[secttantsec3tdt+sectdt]
    ⇒ ∫ sec ⁡ 3 t d t = 1 2 ( sec ⁡ t tan ⁡ t + ∫ sec ⁡ t d t ) = 1 2 ( sec ⁡ t tan ⁡ t + ln ⁡ ∣ sec ⁡ t + tan ⁡ t ∣ ) + C 1 = 1 2 ( x a ⋅ x 2 − a 2 a + ln ⁡ ∣ x a + x 2 − a 2 a ∣ ) + C 1 = 1 2 ( x x 2 − a 2 a 2 + ln ⁡ ∣ x + x 2 − a 2 ∣ ) + C 2 \begin{aligned} & \Rightarrow \int{{{\sec }^{3}}tdt}=\frac{1}{2}\left( \sec t\tan t+\int{\sec tdt} \right) \\ & =\frac{1}{2}\left( \sec t\tan t+\ln \left| \sec t+\tan t \right| \right)+{{C}_{1}} \\ & =\frac{1}{2}\left( \frac{x}{a}\centerdot \frac{\sqrt{{{x}^{2}}-{{a}^{2}}}}{a}+\ln \left| \frac{x}{a}+\frac{\sqrt{{{x}^{2}}-{{a}^{2}}}}{a} \right| \right)+{{C}_{1}} \\ & =\frac{1}{2}\left( \frac{x\sqrt{{{x}^{2}}-{{a}^{2}}}}{{{a}^{2}}}+\ln \left| x+\sqrt{{{x}^{2}}-{{a}^{2}}} \right| \right)+{{C}_{2}} \\ \end{aligned} sec3tdt=21(secttant+sectdt)=21(secttant+lnsect+tant)+C1=21(axax2a2 +lnax+ax2a2 )+C1=21(a2xx2a2 +lnx+x2a2 )+C2
    ⇒ ∫ x 2 x 2 − a 2 d x = a 2 ∫ sec ⁡ 3 t d t = 1 2 ( x x 2 − a 2 + a 2 ln ⁡ ∣ x + x 2 − a 2 ∣ ) + C \begin{aligned} & \Rightarrow \int{\frac{{{x}^{2}}}{\sqrt{{{x}^{2}}-{{a}^{2}}}}dx}={{a}^{2}}\int{{{\sec }^{3}}tdt} \\ & =\frac{1}{2}\left( x\sqrt{{{x}^{2}}-{{a}^{2}}}+{{a}^{2}}\ln \left| x+\sqrt{{{x}^{2}}-{{a}^{2}}} \right| \right)+C \\ \end{aligned} x2a2 x2dx=a2sec3tdt=21(xx2a2 +a2lnx+x2a2 )+C

33. ∫ 1 x x 2 − a 2 d x = 1 a arccos ⁡ a x + C \int_{{}}^{{}}{\frac{1}{x\sqrt[{}]{{{x}^{2}}-{{a}^{2}}}}dx}=\frac{1}{a}\arccos \frac{a}{x}+C xx2a2 1dx=a1arccosxa+C

证明:
x = a sec ⁡ t ,   t ∈ ( 0 , π 2 ) ⋃ ( π , 3 π 2 ) x=a\sec t,\text{ }t\in \left( 0,\frac{\pi }{2} \right)\bigcup \left( \pi ,\frac{3\pi }{2} \right) x=asect, t(0,2π)(π,23π),则有
∫ 1 x x 2 − a 2 d x = ∫ 1 ( a sec ⁡ t ) a 2 tan ⁡ 2 t d ( a sec ⁡ t ) = ∫ 1 ( a sec ⁡ t ) ( a tan ⁡ t ) ( a sec ⁡ t tan ⁡ t ) d t   ( a > 0 ,   tan ⁡ t > 0 ) = 1 a ∫ d t = t a + C = 1 a arccos ⁡ a x + C \begin{aligned} & \int{\frac{1}{x\sqrt{{{x}^{2}}-{{a}^{2}}}}dx}=\int_{{}}^{{}}{\frac{1}{\left( a\sec t \right)\sqrt[{}]{{{a}^{2}}{{\tan }^{2}}t}}d\left( a\sec t \right)} \\ & =\int_{{}}^{{}}{\frac{1}{\left( a\sec t \right)\left( a\tan t \right)}\left( a\sec t\tan t \right)dt}\text{ }\left( a>0,\text{ }\tan t>0 \right) \\ & =\frac{1}{a}\int{dt} \\ & =\frac{t}{a}+C \\ & =\frac{1}{a}\arccos \frac{a}{x}+C \\ \end{aligned} xx2a2 1dx=(asect)a2tan2t 1d(asect)=(asect)(atant)1(asecttant)dt (a>0, tant>0)=a1dt=at+C=a1arccosxa+C

34. ∫ 1 x x 2 + a 2 d x = − 1 a ln ⁡ ∣ a + x 2 + a 2 x ∣ + C \int_{{}}^{{}}{\frac{1}{x\sqrt[{}]{{{x}^{2}}+{{a}^{2}}}}dx}=\frac{-1}{a}\ln \left| \frac{a+\sqrt[{}]{{{x}^{2}}+{{a}^{2}}}}{x} \right|+C xx2+a2 1dx=a1lnxa+x2+a2 +C

证明:
x = a tan ⁡ t ,   t ∈ ( − π 2 , 0 ) ⋃ ( 0 , π 2 ) x=a\tan t,\text{ }t\in \left( -\frac{\pi }{2},0 \right)\bigcup \left( 0,\frac{\pi }{2} \right) x=atant, t(2π,0)(0,2π),则有
∫ 1 x x 2 + a 2 d x = ∫ 1 ( a tan ⁡ t ) a 2 sec ⁡ 2 t d ( a tan ⁡ t ) = ∫ 1 ( a tan ⁡ t ) ( a sec ⁡ t ) ( a sec ⁡ 2 t ) d t   ( a > 0 ,   sec ⁡ t > 0 ) = 1 a ∫ csc ⁡ t d t = 1 a ln ⁡ ∣ csc ⁡ t − cot ⁡ t ∣ + C 1 = 1 a ln ⁡ ∣ x 2 + a 2 x − a x ∣ + C 1 = − 1 a ln ⁡ ∣ a + x 2 + a 2 x ∣ + C 2 \begin{aligned} & \int{\frac{1}{x\sqrt{{{x}^{2}}+{{a}^{2}}}}dx}=\int_{{}}^{{}}{\frac{1}{\left( a\tan t \right)\sqrt[{}]{{{a}^{2}}{{\sec }^{2}}t}}d\left( a\tan t \right)} \\ & =\int_{{}}^{{}}{\frac{1}{\left( a\tan t \right)\left( a\sec t \right)}\left( a{{\sec }^{2}}t \right)dt}\text{ }\left( a>0,\text{ }\sec t>0 \right) \\ & =\frac{1}{a}\int{\csc tdt} \\ & =\frac{1}{a}\ln |\csc t-\cot t|+{{C}_{1}} \\ & =\frac{1}{a}\ln |\frac{\sqrt{{{x}^{2}}+{{a}^{2}}}}{x}-\frac{a}{x}|+{{C}_{1}} \\ & =\frac{-1}{a}\ln |\frac{a+\sqrt{{{x}^{2}}+{{a}^{2}}}}{x}|+{{C}_{2}} \\ \end{aligned} xx2+a2 1dx=(atant)a2sec2t 1d(atant)=(atant)(asect)1(asec2t)dt (a>0, sect>0)=a1csctdt=a1lncsctcott+C1=a1lnxx2+a2 xa+C1=a1lnxa+x2+a2 +C2
注:   ln ⁡ ∣ a + a 2 − x 2 x ∣ + ln ⁡ ∣ a − a 2 − x 2 x ∣ = 0 ⇒ ln ⁡ ∣ a + a 2 − x 2 x ∣ = − ln ⁡ ∣ a − a 2 − x 2 x ∣ \begin{aligned} & \text{ }\ln \left| \frac{a+\sqrt{{{a}^{2}}-{{x}^{2}}}}{x} \right|+\ln \left| \frac{a-\sqrt{{{a}^{2}}-{{x}^{2}}}}{x} \right|=0 \\ & \Rightarrow \ln \left| \frac{a+\sqrt{{{a}^{2}}-{{x}^{2}}}}{x} \right|=-\ln \left| \frac{a-\sqrt{{{a}^{2}}-{{x}^{2}}}}{x} \right| \\ \end{aligned}  lnxa+a2x2 +lnxaa2x2 =0lnxa+a2x2 =lnxaa2x2

35. ∫ 1 x 2 x 2 ± a 2 d x = ∓ x 2 ± a 2 a 2 x + C \int_{{}}^{{}}{\frac{1}{{{x}^{2}}\sqrt[{}]{{{x}^{2}}\pm {{a}^{2}}}}dx}=\mp \frac{\sqrt[{}]{{{x}^{2}}\pm {{a}^{2}}}}{{{a}^{2}}x}+C x2x2±a2 1dx=a2xx2±a2 +C

证明:

  1. x = a sec ⁡ t ,   t ∈ ( 0 , π 2 ) ⋃ ( π , 3 2 π ) x=a\sec t,\text{ }t\in \left( 0,\frac{\pi }{2} \right)\bigcup \left( \pi ,\frac{3}{2}\pi \right) x=asect, t(0,2π)(π,23π),则有
    ∫ 1 x 2 x 2 − a 2 d x = ∫ 1 ( a sec ⁡ t ) 2 a 2 tan ⁡ 2 t d ( a sec ⁡ t ) = ∫ 1 ( a sec ⁡ t ) 2 ( a tan ⁡ t ) ( a sec ⁡ t tan ⁡ t ) d t   ( a > 0 ,   tan ⁡ t > 0 ) = 1 a 2 ∫ cos ⁡ t d t = 1 a 2 sin ⁡ t + C = x 2 − a 2 a 2 x + C \begin{aligned} & \int{\frac{1}{{{x}^{2}}\sqrt{{{x}^{2}}-{{a}^{2}}}}dx}=\int_{{}}^{{}}{\frac{1}{{{\left( a\sec t \right)}^{2}}\sqrt[{}]{{{a}^{2}}{{\tan }^{2}}t}}d\left( a\sec t \right)} \\ & =\int_{{}}^{{}}{\frac{1}{{{\left( a\sec t \right)}^{2}}\left( a\tan t \right)}\left( a\sec t\tan t \right)dt}\text{ }\left( a>0,\text{ }\tan t>0 \right) \\ & =\frac{1}{{{a}^{2}}}\int{\cos tdt} \\ & =\frac{1}{{{a}^{2}}}\sin t+C \\ & =\frac{\sqrt{{{x}^{2}}-{{a}^{2}}}}{{{a}^{2}}x}+C \\ \end{aligned} x2x2a2 1dx=(asect)2a2tan2t 1d(asect)=(asect)2(atant)1(asecttant)dt (a>0, tant>0)=a21costdt=a21sint+C=a2xx2a2 +C

  2. x = a tan ⁡ t ,   t ∈ ( − π 2 , 0 ) ⋃ ( 0 , π 2 ) x=a\tan t,\text{ }t\in \left( -\frac{\pi }{2},0 \right)\bigcup \left( 0,\frac{\pi }{2} \right) x=atant, t(2π,0)(0,2π),则有
    ∫ 1 x 2 x 2 + a 2 d x = ∫ 1 ( a tan ⁡ t ) 2 a 2 sec ⁡ 2 t d ( a tan ⁡ t ) = ∫ 1 ( a tan ⁡ t ) 2 ( a sec ⁡ t ) ( a sec ⁡ 2 t ) d t   ( a > 0 ,   sec ⁡ t > 0 ) = 1 a 2 ∫ cos ⁡ t ⋅ csc ⁡ 2 t d t = 1 a 2 ∫ cos ⁡ t ⋅ d ( − cot ⁡ t ) = − 1 a 2 [ cos ⁡ t ⋅ cot ⁡ t + ∫ cot ⁡ t ⋅ sin ⁡ t d t ] = − 1 a 2 [ cos ⁡ 2 t sin ⁡ t + ∫ cos ⁡ t d t ] = − 1 a 2 [ cos ⁡ 2 t sin ⁡ t + sin ⁡ t ] + C = − 1 a 2 ⋅ 1 sin ⁡ t + C = − x 2 + a 2 a 2 x + C \begin{aligned} & \int{\frac{1}{{{x}^{2}}\sqrt{{{x}^{2}}+{{a}^{2}}}}}dx=\int_{{}}^{{}}{\frac{1}{{{\left( a\tan t \right)}^{2}}\sqrt[{}]{{{a}^{2}}{{\sec }^{2}}t}}d\left( a\tan t \right)} \\ & =\int_{{}}^{{}}{\frac{1}{{{\left( a\tan t \right)}^{2}}\left( a\sec t \right)}\left( a{{\sec }^{2}}t \right)dt}\text{ }\left( a>0,\text{ }\sec t>0 \right) \\ & =\frac{1}{{{a}^{2}}}\int{\cos t\centerdot {{\csc }^{2}}tdt} \\ & =\frac{1}{{{a}^{2}}}\int{\cos t\centerdot d\left( -\cot t \right)} \\ & =-\frac{1}{{{a}^{2}}}\left[ \cos t\centerdot \cot t+\int{\cot t}\centerdot \sin tdt \right] \\ & =-\frac{1}{{{a}^{2}}}\left[ \frac{{{\cos }^{2}}t}{\sin t}+\int_{{}}^{{}}{\cos tdt} \right] \\ & =-\frac{1}{{{a}^{2}}}\left[ \frac{{{\cos }^{2}}t}{\sin t}+\sin t \right]+C \\ & =-\frac{1}{{{a}^{2}}}\centerdot \frac{1}{\sin t}+C \\ & =-\frac{\sqrt{{{x}^{2}}+{{a}^{2}}}}{{{a}^{2}}x}+C \\ \end{aligned} x2x2+a2 1dx=(atant)2a2sec2t 1d(atant)=(atant)2(asect)1(asec2t)dt (a>0, sect>0)=a21costcsc2tdt=a21costd(cott)=a21[costcott+cottsintdt]=a21[sintcos2t+costdt]=a21[sintcos2t+sint]+C=a21sint1+C=a2xx2+a2 +C

36. ∫ 1 ( x 2 ± a 2 ) 3 2 d x = ± x a 2 x 2 ± a 2 + C \int_{{}}^{{}}{\frac{1}{{{\left( {{x}^{2}}\pm {{a}^{2}} \right)}^{\frac{3}{2}}}}dx}=\frac{\pm x}{{{a}^{2}}\sqrt[{}]{{{x}^{2}}\pm {{a}^{2}}}}+C (x2±a2)231dx=a2x2±a2 ±x+C

证明:

  1. x = a tan ⁡ t ,   t ∈ ( − π 2 , π 2 ) x=a\tan t,\text{ }t\in \left( -\frac{\pi }{2},\frac{\pi }{2} \right) x=atant, t(2π,2π),则有
    ∫ 1 ( x 2 + a 2 ) 3 / 2 d x = ∫ 1 ( a 2 sec ⁡ 2 t ) 3 2 d ( a tan ⁡ t ) = ∫ 1 ( a sec ⁡ t ) 3 ( a sec ⁡ 2 t ) d t = 1 a 2 ∫ cos ⁡ t d t = 1 a 2 sin ⁡ t + C = x a 2 x 2 + a 2 + C \begin{aligned} & \int{\frac{1}{{{({{x}^{2}}+{{a}^{2}})}^{3/2}}}dx}=\int_{{}}^{{}}{\frac{1}{{{\left( {{a}^{2}}{{\sec }^{2}}t \right)}^{\frac{3}{2}}}}d\left( a\tan t \right)} \\ & =\int_{{}}^{{}}{\frac{1}{{{\left( a\sec t \right)}^{3}}}\left( a{{\sec }^{2}}t \right)dt} \\ & =\frac{1}{{{a}^{2}}}\int{\cos tdt} \\ & =\frac{1}{{{a}^{2}}}\sin t+C \\ & =\frac{x}{{{a}^{2}}\sqrt{{{x}^{2}}+{{a}^{2}}}}+C \\ \end{aligned} (x2+a2)3/21dx=(a2sec2t)231d(atant)=(asect)31(asec2t)dt=a21costdt=a21sint+C=a2x2+a2 x+C

  2. x = a sec ⁡ t ,   t ∈ ( 0 , π 2 ) ⋃ ( π , 3 π 2 ) x=a\sec t,\text{ }t\in \left( 0,\frac{\pi }{2} \right)\bigcup \left( \pi ,\frac{3\pi }{2} \right) x=asect, t(0,2π)(π,23π),则有
    ∫ 1 ( x 2 − a 2 ) 3 / 2 d x = ∫ 1 ( a 2 tan ⁡ 2 t ) 3 2 d ( a sec ⁡ t ) = ∫ 1 ( a tan ⁡ t ) 3 ( a sec ⁡ t tan ⁡ t ) d t = 1 a 2 ∫ sec ⁡ t tan ⁡ 2 t d t = 1 a 2 ∫ cos ⁡ t sin ⁡ 2 t d t = 1 a 2 ∫ d ( sin ⁡ t ) sin ⁡ 2 t = − 1 a 2 ⋅ 1 sin ⁡ t + C = − x a 2 x 2 − a 2 + C \begin{aligned} & \int{\frac{1}{{{({{x}^{2}}-{{a}^{2}})}^{3/2}}}dx}=\int_{{}}^{{}}{\frac{1}{{{\left( {{a}^{2}}{{\tan }^{2}}t \right)}^{\frac{3}{2}}}}d\left( a\sec t \right)} \\ & =\int_{{}}^{{}}{\frac{1}{{{\left( a\tan t \right)}^{3}}}\left( a\sec t\tan t \right)dt} \\ & =\frac{1}{{{a}^{2}}}\int{\frac{\sec t}{{{\tan }^{2}}t}}dt \\ & =\frac{1}{{{a}^{2}}}\int{\frac{\cos t}{{{\sin }^{2}}t}dt} \\ & =\frac{1}{{{a}^{2}}}\int{\frac{d(\sin t)}{{{\sin }^{2}}t}} \\ & =\frac{-1}{{{a}^{2}}}\centerdot \frac{1}{\sin t}+C \\ & =\frac{-x}{{{a}^{2}}\sqrt{{{x}^{2}}-{{a}^{2}}}}+C \\ \end{aligned} (x2a2)3/21dx=(a2tan2t)231d(asect)=(atant)31(asecttant)dt=a21tan2tsectdt=a21sin2tcostdt=a21sin2td(sint)=a21sint1+C=a2x2a2 x+C

含有 a 2 − x 2 ,   a > 0 \sqrt[{}]{{{a}^{2}}-{{x}^{2}}},\text{ }a>0 a2x2 , a>0的形式

37. ∫ a 2 − x 2 d x = 1 2 ( x a 2 − x 2 + a 2 arcsin ⁡ x a ) + C \int_{{}}^{{}}{\sqrt[{}]{{{a}^{2}}-{{x}^{2}}}dx}=\frac{1}{2}\left( x\sqrt[{}]{{{a}^{2}}-{{x}^{2}}}+{{a}^{2}}\arcsin \frac{x}{a} \right)+C a2x2 dx=21(xa2x2 +a2arcsinax)+C

证明:
x = a sin ⁡ t x=a\sin t x=asint t ∈ [ − π 2 , π 2 ] t\in \left[ -\frac{\pi }{2},\frac{\pi }{2} \right] t[2π,2π],则有
∫ a 2 − x 2 d x = ∫ a 2 cos ⁡ 2 t ⋅ d ( a sin ⁡ t ) = ∫ ( a cos ⁡ t ) ⋅ ( a cos ⁡ t ) d t   ( a > 0 ,   cos ⁡ t ≥ 0 ) = a 2 ∫ cos ⁡ 2 t d t = a 2 2 ( t + sin ⁡ t cos ⁡ t ) + C = a 2 2 ( arcsin ⁡ x a + x a ⋅ a 2 − x 2 a ) + C = 1 2 ( x a 2 − x 2 + a 2 arcsin ⁡ x a ) + C \begin{aligned} & \int{\sqrt{{{a}^{2}}-{{x}^{2}}}dx}=\int_{{}}^{{}}{\sqrt[{}]{{{a}^{2}}{{\cos }^{2}}t}\centerdot d\left( a\sin t \right)} \\ & =\int_{{}}^{{}}{\left( a\cos t \right)\centerdot \left( a\cos t \right)dt}\text{ }\left( a>0,\text{ }\cos t\ge 0 \right) \\ & ={{a}^{2}}\int{{{\cos }^{2}}tdt} \\ & =\frac{{{a}^{2}}}{2}\left( t+\sin t\cos t \right)+C \\ & =\frac{{{a}^{2}}}{2}\left( \arcsin \frac{x}{a}+\frac{x}{a}\centerdot \frac{\sqrt{{{a}^{2}}-{{x}^{2}}}}{a} \right)+C \\ & =\frac{1}{2}\left( x\sqrt{{{a}^{2}}-{{x}^{2}}}+{{a}^{2}}\arcsin \frac{x}{a} \right)+C \\ \end{aligned} a2x2 dx=a2cos2t d(asint)=(acost)(acost)dt (a>0, cost0)=a2cos2tdt=2a2(t+sintcost)+C=2a2(arcsinax+axaa2x2 )+C=21(xa2x2 +a2arcsinax)+C
注:用到公式49: ∫ cos ⁡ 2 x d x = 1 2 ( x + sin ⁡ x cos ⁡ x ) + C \int_{{}}^{{}}{{{\cos }^{2}}xdx}=\frac{1}{2}\left( x+\sin x\cos x \right)+C cos2xdx=21(x+sinxcosx)+C

38. ∫ x 2 a 2 − x 2 d x = 1 8 [ x ( 2 x 2 − a 2 ) a 2 − x 2 + a 4 arcsin ⁡ x a ] + C \int_{{}}^{{}}{{{x}^{2}}\sqrt[{}]{{{a}^{2}}-{{x}^{2}}}dx}=\frac{1}{8}\left[ x\left( 2{{x}^{2}}-{{a}^{2}} \right)\sqrt[{}]{{{a}^{2}}-{{x}^{2}}}+{{a}^{4}}\arcsin \frac{x}{a} \right]+C x2a2x2 dx=81[x(2x2a2)a2x2 +a4arcsinax]+C

证明:
x = a sin ⁡ t x=a\sin t x=asint t ∈ [ − π 2 , π 2 ] t\in \left[ -\frac{\pi }{2},\frac{\pi }{2} \right] t[2π,2π],则有
∫ x 2 a 2 − x 2 d x = ∫ ( a 2 sin ⁡ 2 t ) a 2 cos ⁡ 2 t d ( a sin ⁡ t ) = ∫ ( a 2 sin ⁡ 2 t ) ( a cos ⁡ t ) ( a cos ⁡ t ) d t   ( a > 0 ,   cos ⁡ t ≥ 0 ) = a 4 ∫ sin ⁡ 2 t cos ⁡ 2 t d t = a 4 8 ∫ sin ⁡ 2 2 t ⋅ d ( 2 t ) = a 4 16 ( 2 t − sin ⁡ 2 t cos ⁡ 2 t ) + C = a 4 16 [ 2 t − ( 2 sin ⁡ t cos ⁡ t ) ( 1 − 2 sin ⁡ 2 t ) ] + C = a 4 16 [ 2 arcsin ⁡ x a − ( 2 ⋅ x a ⋅ 1 − ( x a ) 2 ) ( 1 − 2 ⋅ ( x a ) 2 ) ] + C = a 4 16 ( 2 arcsin ⁡ x a − 2 x a 2 − x 2 a 2 ⋅ a 2 − 2 x 2 a 2 ) + C = a 4 8 arcsin ⁡ x a − x 8 a 2 − x 2 ( a 2 − 2 x 2 ) + C = 1 8 [ x ( 2 x 2 − a 2 ) a 2 − x 2 + a 4 arcsin ⁡ x a ] + C \begin{aligned} & \int{{{x}^{2}}\sqrt{{{a}^{2}}-{{x}^{2}}}dx}=\int{\left( {{a}^{2}}{{\sin }^{2}}t \right)\sqrt[{}]{{{a}^{2}}{{\cos }^{2}}t}d\left( a\sin t \right)} \\ & =\int{\left( {{a}^{2}}{{\sin }^{2}}t \right)\left( a\cos t \right)\left( a\cos t \right)dt\text{ }\left( a>0,\text{ }\cos t\ge 0 \right)} \\ & ={{a}^{4}}\int{{{\sin }^{2}}t{{\cos }^{2}}tdt} \\ & =\frac{{{a}^{4}}}{8}\int{{{\sin }^{2}}2t}\centerdot d\left( 2t \right) \\ & =\frac{{{a}^{4}}}{16}\left( 2t-\sin 2t\cos 2t \right)+C \\ & =\frac{{{a}^{4}}}{16}\left[ 2t-\left( 2\sin t\cos t \right)\left( 1-2{{\sin }^{2}}t \right) \right]+C \\ & =\frac{{{a}^{4}}}{16}\left[ 2\arcsin \frac{x}{a}-\left( 2\centerdot \frac{x}{a}\centerdot \sqrt[{}]{1-{{\left( \frac{x}{a} \right)}^{2}}} \right)\left( 1-2\centerdot {{\left( \frac{x}{a} \right)}^{2}} \right) \right]+C \\ & =\frac{{{a}^{4}}}{16}\left( 2\arcsin \frac{x}{a}-\frac{2x\sqrt{{{a}^{2}}-{{x}^{2}}}}{{{a}^{2}}}\centerdot \frac{{{a}^{2}}-2{{x}^{2}}}{{{a}^{2}}} \right)+C \\ & =\frac{{{a}^{4}}}{8}\arcsin \frac{x}{a}-\frac{x}{8}\sqrt{{{a}^{2}}-{{x}^{2}}}({{a}^{2}}-2{{x}^{2}})+C \\ & =\frac{1}{8}\left[ x\left( 2{{x}^{2}}-{{a}^{2}} \right)\sqrt{{{a}^{2}}-{{x}^{2}}}+{{a}^{4}}\arcsin \frac{x}{a} \right]+C \\ \end{aligned} x2a2x2 dx=(a2sin2t)a2cos2t d(asint)=(a2sin2t)(acost)(acost)dt (a>0, cost0)=a4sin2tcos2tdt=8a4sin22td(2t)=16a4(2tsin2tcos2t)+C=16a4[2t(2sintcost)(12sin2t)]+C=16a4[2arcsinax(2ax1(ax)2 )(12(ax)2)]+C=16a4(2arcsinaxa22xa2x2 a2a22x2)+C=8a4arcsinax8xa2x2 (a22x2)+C=81[x(2x2a2)a2x2 +a4arcsinax]+C
注:使用到公式48: ∫ sin ⁡ 2 x d x = 1 2 ( x − sin ⁡ x cos ⁡ x ) + C \int_{{}}^{{}}{{{\sin }^{2}}xdx}=\frac{1}{2}\left( x-\sin x\cos x \right)+C sin2xdx=21(xsinxcosx)+C

39. ∫ 1 x a 2 − x 2 d x = a 2 − x 2 − a ln ⁡ ∣ a + a 2 − x 2 x ∣ + C \int_{{}}^{{}}{\frac{1}{x}\sqrt[{}]{{{a}^{2}}-{{x}^{2}}}dx}=\sqrt[{}]{{{a}^{2}}-{{x}^{2}}}-a\ln \left| \frac{a+\sqrt[{}]{{{a}^{2}}-{{x}^{2}}}}{x} \right|+C x1a2x2 dx=a2x2 alnxa+a2x2 +C

证明:
x = a sin ⁡ t ,   t ∈ [ − π 2 , π 2 ] x=a\sin t,\text{ }t\in \left[ -\frac{\pi }{2},\frac{\pi }{2} \right] x=asint, t[2π,2π],则有
∫ 1 x a 2 − x 2 d x = ∫ 1 a sin ⁡ t a 2 cos ⁡ 2 t d ( a sin ⁡ t ) = ∫ 1 a sin ⁡ t ( a cos ⁡ t ) ( a cos ⁡ t ) d t   ( a > 0 ,   cos ⁡ t ≥ 0 ) = a ∫ cos ⁡ 2 t sin ⁡ t d t = a ∫ ( csc ⁡ t − sin ⁡ t ) d t = a ( ln ⁡ ∣ csc ⁡ t − cot ⁡ t ∣ + cos ⁡ t ) + C = a ( ln ⁡ ∣ a x − a 2 − x 2 x ∣ + a 2 − x 2 a ) + C = a 2 − x 2 + a ln ⁡ ∣ a − a 2 − x 2 x ∣ + C = a 2 − x 2 − a ln ⁡ ∣ a + a 2 − x 2 x ∣ + C \begin{aligned} & \int{\frac{1}{x}\sqrt{{{a}^{2}}-{{x}^{2}}}dx}=\int_{{}}^{{}}{\frac{1}{a\sin t}\sqrt[{}]{{{a}^{2}}{{\cos }^{2}}t}d\left( a\sin t \right)} \\ & =\int{\frac{1}{a\sin t}\left( a\cos t \right)\left( a\cos t \right)dt}\text{ }\left( a>0,\text{ }\cos t\ge 0 \right) \\ & =a\int{\frac{{{\cos }^{2}}t}{\sin t}}dt \\ & =a\int{\left( \csc t-\sin t \right)dt} \\ & =a\left( \ln \left| \csc t-\cot t \right|+\cos t \right)+C \\ & =a\left( \ln \left| \frac{a}{x}-\frac{\sqrt{{{a}^{2}}-{{x}^{2}}}}{x} \right|+\frac{\sqrt{{{a}^{2}}-{{x}^{2}}}}{a} \right)+C \\ & =\sqrt{{{a}^{2}}-{{x}^{2}}}+a\ln |\frac{a-\sqrt{{{a}^{2}}-{{x}^{2}}}}{x}|+C \\ & =\sqrt{{{a}^{2}}-{{x}^{2}}}-a\ln |\frac{a+\sqrt{{{a}^{2}}-{{x}^{2}}}}{x}|+C \\ \end{aligned} x1a2x2 dx=asint1a2cos2t d(asint)=asint1(acost)(acost)dt (a>0, cost0)=asintcos2tdt=a(csctsint)dt=a(lncsctcott+cost)+C=a(lnxaxa2x2 +aa2x2 )+C=a2x2 +alnxaa2x2 +C=a2x2 alnxa+a2x2 +C
注:1.使用到公式62: ∫ csc ⁡ x d x = ln ⁡ ∣ csc ⁡ x − cot ⁡ x ∣ + C \int_{{}}^{{}}{\csc xdx}=\ln \left| \csc x-\cot x \right|+C cscxdx=lncscxcotx+C
2.   ln ⁡ ∣ a + a 2 − x 2 x ∣ + ln ⁡ ∣ a − a 2 − x 2 x ∣ = 0 ⇒ ln ⁡ ∣ a + a 2 − x 2 x ∣ = − ln ⁡ ∣ a − a 2 − x 2 x ∣ \begin{aligned} & \text{ }\ln \left| \frac{a+\sqrt{{{a}^{2}}-{{x}^{2}}}}{x} \right|+\ln \left| \frac{a-\sqrt{{{a}^{2}}-{{x}^{2}}}}{x} \right|=0 \\ & \Rightarrow \ln \left| \frac{a+\sqrt{{{a}^{2}}-{{x}^{2}}}}{x} \right|=-\ln \left| \frac{a-\sqrt{{{a}^{2}}-{{x}^{2}}}}{x} \right| \\ \end{aligned}  lnxa+a2x2 +lnxaa2x2 =0lnxa+a2x2 =lnxaa2x2

40. ∫ 1 x 2 a 2 − x 2 d x = − 1 x a 2 − x 2 − arcsin ⁡ x a + C \int_{{}}^{{}}{\frac{1}{{{x}^{2}}}\sqrt[{}]{{{a}^{2}}-{{x}^{2}}}dx}=\frac{-1}{x}\sqrt[{}]{{{a}^{2}}-{{x}^{2}}}-\arcsin \frac{x}{a}+C x21a2x2 dx=x1a2x2 arcsinax+C

证明:
x = a sin ⁡ t ,   t ∈ [ − π 2 , π 2 ] x=a\sin t,\text{ }t\in \left[ -\frac{\pi }{2},\frac{\pi }{2} \right] x=asint, t[2π,2π],则有
∫ 1 x 2 a 2 − x 2 d x = ∫ 1 a 2 sin ⁡ 2 t a 2 cos ⁡ 2 t d ( a sin ⁡ t ) = ∫ 1 a 2 sin ⁡ 2 t ( a cos ⁡ t ) ( a cos ⁡ t ) d t   ( a > 0 ,   cos ⁡ t ≥ 0 ) = ∫ cot ⁡ 2 t d t = − t − cot ⁡ t + C = − arcsin ⁡ x a − − 1 x a 2 − x 2 + C = − 1 x a 2 − x 2 − arcsin ⁡ x a + C \begin{aligned} & \int{\frac{1}{{{x}^{2}}}\sqrt{{{a}^{2}}-{{x}^{2}}}dx}=\int_{{}}^{{}}{\frac{1}{{{a}^{2}}{{\sin }^{2}}t}\sqrt[{}]{{{a}^{2}}{{\cos }^{2}}t}d\left( a\sin t \right)} \\ & =\int{\frac{1}{{{a}^{2}}{{\sin }^{2}}t}\left( a\cos t \right)\left( a\cos t \right)dt\text{ }\left( a>0,\text{ }\cos t\ge 0 \right)} \\ & =\int{{{\cot }^{2}}tdt} \\ & =-t-\cot t+C \\ & =-\arcsin \frac{x}{a}-\frac{-1}{x}\sqrt{{{a}^{2}}-{{x}^{2}}}+C \\ & =\frac{-1}{x}\sqrt{{{a}^{2}}-{{x}^{2}}}-\arcsin \frac{x}{a}+C \\ \end{aligned} x21a2x2 dx=a2sin2t1a2cos2t d(asint)=a2sin2t1(acost)(acost)dt (a>0, cost0)=cot2tdt=tcott+C=arcsinaxx1a2x2 +C=x1a2x2 arcsinax+C
注:使用到公式64: ∫ cot ⁡ 2 x d x = − x − cot ⁡ x + C \int_{{}}^{{}}{{{\cot }^{2}}xdx}=-x-\cot x+C cot2xdx=xcotx+C

  • 4
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值