环,域,模初探

环(Ring)

环的定义
  令 ( R , + , × ) \left( R,+,\times \right) (R,+,×)为一个带有两个二元运算的集合,若:

  1. ( R , + ) \left( R,+ \right) (R,+)是阿贝尔群 (这一条件单独地就能说明 R R R含有加法单位元 0 0 0,即 R R R非空);
  2. ( R , × ) \left( R,\times \right) (R,×)是半群(单独的这一条件不能说明 R R R非空,因为 ∅ \varnothing 也是一个半群);
  3. 分配律(Distribution Law): { a ( b + c ) = a b + a c ( a + b ) c = a c + b c \left\{ \begin{aligned} & a\left( b+c \right)=ab+ac \\ & \left( a+b \right)c=ac+bc \\ \end{aligned} \right. {a(b+c)=ab+ac(a+b)c=ac+bc

则称 ( R , + , × ) \left( R,+,\times \right) (R,+,×)是一个环。

  条件3的分配律可以说明一定有 0 ⋅ r = 0 0\centerdot r=0 0r=0 r ⋅ 0 = 0 r\centerdot 0=0 r0=0,其中 0 0 0是加法单位元。
任取 r ∈ R r\in R rR,有
  r ⋅ 0 = r ⋅ ( 0 + 0 ) = r ⋅ 0 + r ⋅ 0 ⇒ r ⋅ 0 − ( r ⋅ 0 ) = r ⋅ 0 + r ⋅ 0 − ( r ⋅ 0 ) = r ⋅ 0 + [ r ⋅ 0 − ( r ⋅ 0 ) ] ⇒ 0   =   r ⋅ 0   +   0 = r ⋅ 0 \begin{aligned} & \text{ }r\centerdot 0=r\centerdot \left( 0+0 \right)=r\centerdot 0+r\centerdot 0 \\ & \Rightarrow r\centerdot 0-{{\left( r\centerdot 0 \right)}}=r\centerdot 0+r\centerdot 0-{{\left( r\centerdot 0 \right)}}=r\centerdot 0+\left[ r\centerdot 0-{{\left( r\centerdot 0 \right)}} \right] \\ & \Rightarrow 0\text{ }=\text{ }r\centerdot 0\text{ }+\text{ }0=r\centerdot 0 \\ \end{aligned}  r0=r(0+0)=r0+r0r0(r0)=r0+r0(r0)=r0+[r0(r0)]0 = r0 + 0=r0
因此有 r ⋅ 0 = 0 r\centerdot 0=0 r0=0 0 ⋅ r = 0 0\centerdot r=0 0r=0同样道理。

环的种类

  1. ( R , × ) \left( R,\times \right) (R,×)是幺半群,则称 R R R是含幺环(Unital ring);
  2. ( R , × ) \left( R,\times \right) (R,×)是交换半群,则称 R R R是交换环(Commutative ring);
  3. R ≠ { 0 } R\ne \left\{ 0 \right\} R={0},且 ∀ a , b ∈ R ,   a , b ≠ 0   ⇒   a b ≠ 0 \forall a,b\in R,\text{ }a,b\ne 0\text{ }\Rightarrow \text{ }ab\ne 0 a,bR, a,b=0  ab=0 ,则称 R R R是整环(Integral ring)。
    (注:即非零元的乘法运算是封闭的。)

环的例子

  1. R , C , Q , Z , Z / m \mathbb{R},\mathbb{C},\mathbb{Q},\mathbb{Z},\mathbb{Z}/m R,C,Q,Z,Z/m都是环, Z / m \mathbb{Z}/m Z/m当且仅当 m m m是素数时才是整环 ;
    Z / m \mathbb{Z}/m Z/m当且仅当 m m m是素数时才是整环的证明如下。
    证明
      考虑 k 1 m + a ∈ a ‾ ,   k 2 m + b ∈ b ‾ {{k}_{1}}m+a\in \overline{a},\text{ }{{k}_{2}}m+b\in \overline{b} k1m+aa, k2m+bb, ∀ a , b ∈ { 1 , 2 , . . . , m − 1 } \forall a,b\in \left\{ 1,2,...,m-1 \right\} a,b{1,2,...,m1}.
    ( k 1 m + a ) ( k 2 m + b ) = k 1 k 2 m 2 + ( k 1 b + k 2 a ) m + a b \left( {{k}_{1}}m+a \right)\left( {{k}_{2}}m+b \right)={{k}_{1}}{{k}_{2}}{{m}^{2}}+\left( {{k}_{1}}b+{{k}_{2}}a \right)m+ab (k1m+a)(k2m+b)=k1k2m2+(k1b+k2a)m+ab
    m ∣ a b \left. m \right|ab mab,因为 m m m Z \mathbb{Z} Z中的素数,所以有 m ∣ a \left. m \right|a ma m ∣ b \left. m \right|b mb(若 m m m既不整除 a a a也不整除 b b b,那么要使得 m ∣ a b \left. m \right|ab mab成立,则得抽取 a a a的一个非1因子和 b b b的一个非1因子相乘得到 m m m,而这与 m m m是素数矛盾),而这显然是不成立的。
    所以 ∀ a , b ∈ { 1 , 2 , . . . , m − 1 } \forall a,b\in \left\{ 1,2,...,m-1 \right\} a,b{1,2,...,m1},即 ∀ a , b ≠ 0 \forall a,b\ne 0 a,b=0,一定有 m m m不整除 a b ab ab,所以 ( k 1 m + a ) ( k 2 m + b ) ∉ 0 ‾ \left( {{k}_{1}}m+a \right)\left( {{k}_{2}}m+b \right)\notin \overline{0} (k1m+a)(k2m+b)/0

  2. M n ( C ) ,   M n ( R ) ,   M n ( Z ) {{M}_{n}}\left( \mathbb{C} \right),\text{ }{{M}_{n}}\left( \mathbb{R} \right),\text{ }{{M}_{n}}\left( \mathbb{Z} \right) Mn(C), Mn(R), Mn(Z)都是环;

  3. C , R , [ a , b ] \mathbb{C},\mathbb{R},\left[ a,b \right] C,R,[a,b]上的 C \mathbb{C} C值函数全体均构成环;

  4. R \mathbb{R} R上的 R \mathbb{R} R值函数全体不是整环 ;
    注: R \mathbb{R} R R \mathbb{R} R值函数全体是一个环,其单位元为 h ( x ) = 0 ,   ∀ x ∈ R h\left( x \right)=0,\text{ }\forall x\in \mathbb{R} h(x)=0, xR.考虑
    f ( x ) = { 1 ,   x < 0 0 ,   x ≥ 0 ,   g ( x ) = { 0 ,   x < 0 1 ,   x ≥ 0 f\left( x \right)=\left\{ \begin{aligned} & 1,\text{ }x<0 \\ & 0,\text{ }x\ge 0 \\ \end{aligned} \right.,\text{ }g\left( x \right)=\left\{ \begin{aligned} & 0,\text{ }x<0 \\ & 1,\text{ }x\ge 0 \\ \end{aligned} \right. f(x)={1, x<00, x0, g(x)={0, x<01, x0
    f ( x ) ,   g ( x ) ≠ 0 f\left( x \right),\text{ }g\left( x \right)\ne 0 f(x), g(x)=0,而 f ( x ) g ( x ) = 0 ,   ∀ x ∈ R f\left( x \right)g\left( x \right)=0,\text{ }\forall x\in \mathbb{R} f(x)g(x)=0, xR.
    因而 R \mathbb{R} R R \mathbb{R} R值函数全体不是一个整环.

  5. G G G是一个群,多项式环 C [ G ] : = { ∑ i n a i g i ∣ a i ∈ C ,   g i ∈ G ,   n ∈ Z ≥ 0 } \mathbb{C}\left[ G \right]:=\left\{ \left. \sum\limits_{i}^{{n}}{{{a}_{i}}{{g}_{i}}} \right|{{a}_{i}}\in \mathbb{C},\text{ }{{g}_{i}}\in G,\ n \in \mathbb{Z}_{\ge 0} \right\} C[G]:={inaigiaiC, giG, nZ0}是含幺环 ,幺元为 1 × e ( 1 ∈ C , e ∈ G ) 1 \times e(1 \in \mathbb{C}, e \in G) 1×e(1C,eG)称为 G G G C \mathbb{C} C上的群环。类似的可以考虑 R [ G ] ,   Q [ G ] ,   Z [ G ] \mathbb{R}\left[ G \right],\text{ }\mathbb{Q}\left[ G \right],\text{ }\mathbb{Z}\left[ G \right] R[G], Q[G], Z[G]

  6. C [ G ] \mathbb{C}\left[ G \right] C[G]有可能是整环 ,有可能不是整环;
    反例:考虑 e , g ∈ G e,g\in G e,gG,则有 e − g ,   e + g ∈ C [ G ] e-g,\text{ }e+g\in \mathbb{C}\left[ G \right] eg, e+gC[G],
    o ( g ) = 2 o\left( g \right)=2 o(g)=2,则有 ( e − g ) ( e + g ) = e − g 2 = 0 \left( e-g \right)\left( e+g \right)=e-{{g}^{2}}=0 (eg)(e+g)=eg2=0,此时非零元乘法运算不封闭了。

  7. ∀ P ∈ Z > 0 \forall P\in {{\mathbb{Z}}_{>0}} PZ>0 ( Z / P , + , × ) \left( \mathbb{Z}/P,+,\times \right) (Z/P,+,×)是一个含幺交换环。
    证明:
      在博文《(初探)各类群》中已经证明 ( Z / P , + ) \left( \mathbb{Z}/P,+ \right) (Z/P,+)是一个阿贝尔群。
    而环的分配律条件继承实数运算的分配律。
    现只需证明 ( Z / P , × ) \left( \mathbb{Z}/P,\times \right) (Z/P,×)是一个阿贝尔幺半群。
    运算封闭性显然成立。
    结合律和交换律:继承实数加法的结合律和交换律。
    单位元: 1 ‾ \overline{1} 1
    所以 ( Z / P , × ) \left( \mathbb{Z}/P,\times \right) (Z/P,×)是一个阿贝尔幺半群。
    综上, ∀ P ∈ Z > 0 \forall P\in {{\mathbb{Z}}_{>0}} PZ>0 ( Z / P , + , × ) \left( \mathbb{Z}/P,+,\times \right) (Z/P,+,×)是一个含幺交换环。

环的命题

  1. R R R是含幺环,则 1 − a b 1-ab 1ab可逆 ⇔ \Leftrightarrow 1 − b a 1-ba 1ba可逆。
    证明:
    假设在含幺环的概念里有如右的级数展开式成立: 1 1 − t = 1 + t + t 2 + . . . = ∑ k = 0 ∞ t k \frac{1}{1-t}=1+t+{{t}^{2}}+...=\sum\limits_{k=0}^{\infty }{{{t}^{k}}} 1t1=1+t+t2+...=k=0tk.
    则可考虑
    ( 1 − a b ) − 1 = 1 1 − a b = 1 + ( a b ) + ( a b ) 2 + . . . {{\left( 1-ab \right)}^{-1}}=\frac{1}{1-ab}=1+\left( ab \right)+{{\left( ab \right)}^{2}}+... (1ab)1=1ab1=1+(ab)+(ab)2+...
    ⇒ b ( 1 − a b ) − 1 a = b a + b a b a + b a b a b a + . . . = b a + ( b a ) 2 + ( b a ) 3 + . . . \Rightarrow b{{\left( 1-ab \right)}^{-1}}a=ba+baba+bababa+...=ba+{{\left( ba \right)}^{2}}+{{\left( ba \right)}^{3}}+... b(1ab)1a=ba+baba+bababa+...=ba+(ba)2+(ba)3+...
    ⇒ 1 + b ( 1 − a b ) − 1 a = 1 + b a + ( b a ) 2 + ( b a ) 3 + . . . = 1 1 − b a = ( 1 − b a ) − 1 . \Rightarrow 1+b{{\left( 1-ab \right)}^{-1}}a=1+ba+{{\left( ba \right)}^{2}}+{{\left( ba \right)}^{3}}+...=\frac{1}{1-ba}={{\left( 1-ba \right)}^{-1}}. 1+b(1ab)1a=1+ba+(ba)2+(ba)3+...=1ba1=(1ba)1.
    再验证猜想 1 + b ( 1 − a b ) − 1 a = ( 1 − b a ) − 1 1+b{{\left( 1-ab \right)}^{-1}}a={{\left( 1-ba \right)}^{-1}} 1+b(1ab)1a=(1ba)1 确实成立。考虑
      ( 1 − b a ) ( 1 + b ( 1 − a b ) − 1 a ) = 1 + b ( 1 − a b ) − 1 a − b a − b a b ( 1 − a b ) − 1 a = 1 − b a + ( b − b a b ) ( 1 − a b ) − 1 a = 1 − b a + b ( 1 − a b ) ( 1 − a b ) − 1 a = 1 \begin{aligned} & \text{ }\left( 1-ba \right)\left( 1+b{{\left( 1-ab \right)}^{-1}}a \right) \\ & =1+b{{\left( 1-ab \right)}^{-1}}a-ba-bab{{\left( 1-ab \right)}^{-1}}a \\ & =1-ba+\left( b-bab \right){{\left( 1-ab \right)}^{-1}}a \\ & =1-ba+b\left( 1-ab \right){{\left( 1-ab \right)}^{-1}}a \\ & =1 \\ \end{aligned}  (1ba)(1+b(1ab)1a)=1+b(1ab)1ababab(1ab)1a=1ba+(bbab)(1ab)1a=1ba+b(1ab)(1ab)1a=1

子环(Subring)

子环定义
   ( R , + , × ) \left( R,+,\times \right) (R,+,×)是一个环, S ⊆ R S\subseteq R SR。若 ( S , + , × ) \left( S,+,\times \right) (S,+,×)是一个环,则称 S S S是子环。

子环例子

  1. Z \mathbb{Z} Z R \mathbb{R} R的子环。

理想(Ideal)

左理想(右理想)定义
   ( R , + , × ) \left( R,+,\times \right) (R,+,×)是一个环, S ⊆ R S\subseteq R SR。若 ( S , + ) \left( S,+ \right) (S,+)是子群,且有 S R ⊆ S ( R S ⊆ S ) SR\subseteq S\left( RS\subseteq S \right) SRS(RSS)(我们也称这一条件为吸收律) ,则称 S S S是右理想 (左理想)。
注:右理想(左理想)也是一个环。
首先 ( S , + ) \left( S,+ \right) (S,+)是一个子群,又继承了 R R R的加法交换律,因而 ( S , + ) \left( S,+ \right) (S,+)是一个交换群。
S R ⊆ S   ∧   S ⊆ R   ⇒   SR\subseteq S\text{ }\wedge \text{ }S\subseteq R\text{ }\Rightarrow \text{ } SRS  SR   ( S , × ) \left( S,\times \right) (S,×)运算封闭,又继承了 R R R的结合律,因而 ( S , × ) \left( S,\times \right) (S,×)是一个半群。
( S , + , × ) \left( S,+,\times \right) (S,+,×)也继承了 ( R , + , × ) \left( R,+,\times \right) (R,+,×)的分配律。
因而右理想(左理想)也是一个环,是 R R R的子环。

理想定义
   S S S是理想 ⇔ \Leftrightarrow S S S既是左理想又是右理想。又若 S ⊂ R S\subset R SR,则称 S S S R R R的真理想(proper ideal)。

理想例子

  1. { 0 } \left\{ 0 \right\} {0} R R R都是 R R R的理想,这两个理想称为 R R R的平凡理想(trivial ideal);
    证明:
    对于运算 + + +,显然 ( { 0 } , + ) \left( \left\{ 0 \right\},+ \right) ({0},+) ( R , + ) \left( R,+ \right) (R,+)都是 ( R , + ) \left( R,+ \right) (R,+)的子群。
    对于运算 × \times × { 0 } × R = R × { 0 } = { 0 } ,   R × R ⊆ R \left\{ 0 \right\}\times R=R\times \left\{ 0 \right\}=\left\{ 0 \right\},\text{ }R\times R\subseteq R {0}×R=R×{0}={0}, R×RR ( R , × ) \left( R,\times \right) (R,×)作为半群的运算封闭性).

  2. Z \mathbb{Z} Z R \mathbb{R} R的子环,但不是 R \mathbb{R} R的理想;
    注:关于 Z \mathbb{Z} Z不是 R \mathbb{R} R的理想的说明。
    整数对实数的乘法没有吸收律,即整数 × \times ×实数不一定是整数。

  3. Z \mathbb{Z} Z的所有理想的集合为 { d Z ∣ d ∈ Z } \left\{ \left. d\mathbb{Z} \right|d\in \mathbb{Z} \right\} {dZdZ}
    证明:

    1. 证明关于 Z \mathbb{Z} Z的所有理想都可以写成某个 d Z d\mathbb{Z} dZ
      Let I ⊆ Z I\subseteq \mathbb{Z} IZ be one ideal of Z \mathbb{Z} Z.
      If I = { 0 } I=\left\{ 0 \right\} I={0}, then we have I = 0 Z I=0\mathbb{Z} I=0Z.
      If I ≠ { 0 } I\ne \left\{ 0 \right\} I={0}, then ∃ a ∈ I ,   a ≠ 0 \exists a\in I,\text{ }a\ne 0 aI, a=0. Because ± 1 ∈ Z \pm 1\in \mathbb{Z} ±1Z, I Z ⊆ I I\mathbb{Z}\subseteq I IZI, we have
      − a ∈ I , -a\in I, aI,
      thus there must be at least one positive element b > 0 ,   b ∈ I b>0,\text{ }b\in I b>0, bI. Denote the minimum positive of I I I by c c c, that is
      ∀ t ∈ I > 0 ,   t ≥ c . \forall t\in {{I}_{>0}},\text{ }t\ge c. tI>0, tc.
      Then obviously we have
      c Z = { n c = s g n ( n ) ⋅ ( c + c + . . . + c ⏞ ∣ n ∣ ) ∣ n = ± 1 , ± 2 , ± 3 , . . . } ⊆ I c\mathbb{Z}=\left\{ \left. nc=sgn \left( n \right)\centerdot \left( \overbrace{c+c+...+c}^{\left| n \right|} \right) \right|n=\pm 1,\pm 2,\pm 3,... \right\}\subseteq I cZ=nc=sgn(n)c+c+...+c nn=±1,±2,±3,...I
      Assume that ∃ d ∈ I ,   ∀ n ∈ Z ,   d ≠ n c \exists d\in I,\text{ }\forall n\in \mathbb{Z},\text{ }d\ne nc dI, nZ, d=nc, then ∃ n 1 ∈ Z \exists {{n}_{1}}\in \mathbb{Z} n1Z, s.t.
      ∣ n 1 ∣ c < d < ∣ n 1 + 1 ∣ c , \left| {{n}_{1}} \right|c<d<\left| {{n}_{1}}+1 \right|c, n1c<d<n1+1c,
      thus we have
      ∣ n 1 + 1 ∣ c − d ∈ I   &   0 < ( n 1 + 1 ) c − d < c , \left| {{n}_{1}}+1 \right|c-d\in I\text{ }\And \text{ }0<\left( {{n}_{1}}+1 \right)c-d<c, n1+1cdI & 0<(n1+1)cd<c,
      which contradicts to the condition “c is the minimum positive element in I I I”. Thus we have
      ∀ t ∈ I ,   ∃ n t ∈ Z ,   s . t .   t = n t c , \forall t\in I,\text{ }\exists {{n}_{t}}\in \mathbb{Z},\text{ }s.t.\text{ }t={{n}_{t}}c, tI, ntZ, s.t. t=ntc,
      which means
      I ⊆ c Z , I\subseteq c\mathbb{Z}, IcZ,
      Thus we have I = c Z I=c\mathbb{Z} I=cZ.
    2. 证明关于所有 d Z d\mathbb{Z} dZ均为 Z \mathbb{Z} Z的理想:直接用定义验证即可得。

理想性质

  1. 任何理想一定都包含加法单位元 0 0 0
    证明:
    由理想的吸收律得来, I R ⊆ I ,   0 ∈ R ,   IR\subseteq I,\text{ }0\in R,\text{ } IRI, 0R,  ∀ t ∈ I ⊆ R ,   t ⋅ 0 = 0 \forall t\in I\subseteq R,\text{ }t\centerdot 0=0 tIR, t0=0。所以理想一定包含 0 0 0

商环(Quotient Ring)

商环定义
   R R R是一个环, I ⊆ R I\subseteq R IR R R R的一个理想。考虑 R R R I I I的商
R / I : = { a + I ∣ ∀ a ∈ R } , R/I:=\left\{ \left. a+I \right|\forall a\in R \right\}, R/I:={a+IaR},
R / I R/I R/I的加法运算继承 R R R的加法运算,即有
( a + I ) + ( b + I ) = ( a + b ) + ( I + I ) = a + b + I . \left( a+I \right)+\left( b+I \right)=\left( a+b \right)+\left(I+I\right)=a+b+I. (a+I)+(b+I)=(a+b)+(I+I)=a+b+I.
并且重新定义 R / I R/I R/I的乘法运算为
( a + I ) ( b + I ) = a b + I . \left( a+I \right)\left( b+I \right)=ab+I. (a+I)(b+I)=ab+I.
R / I R/I R/I是环 ,称为 R R R I I I的商环。
注:证明 R / I R/I R/I是环。
( R / I , + ) \left( R/I,+ \right) (R/I,+)的封闭性由其加法运算的规则即可得,结合律继承 R R R的结合律,加法单位元为 0 + I = I 0+I=I 0+I=I,对每个 a + I a+I a+I它的逆为 − a + I -a+I a+I, 因此 ( R / I , + ) \left( R/I,+ \right) (R/I,+)是阿贝尔群。
( R / I , × ) \left( R/I,\times \right) (R/I,×)的封闭性由其乘法运算的定义即可得,结合律证明如下:
{ [ ( a + I ) ( b + I ) ] ( c + I ) = ( a b + I ) ( c + I ) = a b c + I ( a + I ) [ ( b + I ) ( c + I ) ] = ( a + I ) ( b c + I ) = a ( b c ) + I \left\{ \begin{aligned} & \left[ \left( a+I \right)\left( b+I \right) \right]\left( c+I \right)=\left( ab+I \right)\left( c+I \right)=abc+I \\ & \left( a+I \right)\left[ \left( b+I \right)\left( c+I \right) \right]=\left( a+I \right)\left( bc+I \right)=a\left( bc \right)+I \\ \end{aligned} \right. {[(a+I)(b+I)](c+I)=(ab+I)(c+I)=abc+I(a+I)[(b+I)(c+I)]=(a+I)(bc+I)=a(bc)+I
⇒ [ ( a + I ) ( b + I ) ] ( c + I ) = ( a + I ) [ ( b + I ) ( c + I ) ] \Rightarrow \left[ \left( a+I \right)\left( b+I \right) \right]\left( c+I \right)=\left( a+I \right)\left[ \left( b+I \right)\left( c+I \right) \right] [(a+I)(b+I)](c+I)=(a+I)[(b+I)(c+I)]
因此 ( R / I , × ) \left( R/I,\times \right) (R/I,×)是半群。
分配律的证明如下:
{ ( a + I ) [ ( b + I ) + ( c + I ) ] = ( a + I ) ( b + c + I ) = a ( b + c ) + I = ( a b + a c ) I ( a + I ) ( b + I ) + ( a + I ) ( c + I ) = ( a b + I ) + ( a c + I ) = ( a b + a c ) I \left\{ \begin{aligned} & \left( a+I \right)\left[ \left( b+I \right)+\left( c+I \right) \right]=\left( a+I \right)\left( b+c+I \right)=a\left( b+c \right)+I=\left( ab+ac \right)I \\ & \left( a+I \right)\left( b+I \right)+\left( a+I \right)\left( c+I \right)=\left( ab+I \right)+\left( ac+I \right)=\left( ab+ac \right)I \\ \end{aligned} \right. {(a+I)[(b+I)+(c+I)]=(a+I)(b+c+I)=a(b+c)+I=(ab+ac)I(a+I)(b+I)+(a+I)(c+I)=(ab+I)+(ac+I)=(ab+ac)I
{ [ ( a + I ) + ( b + I ) ] ( c + I ) = ( a + b + I ) ( c + I ) = ( a + b ) c + I = ( a c + b c ) + I ( a + I ) ( c + I ) + ( b + I ) ( c + I ) = ( a c + I ) + ( b c + I ) = ( a c + b c ) + I \left\{ \begin{aligned} & \left[ \left( a+I \right)+\left( b+I \right) \right]\left( c+I \right)=\left( a+b+I \right)\left( c+I \right)=\left( a+b \right)c+I=\left( ac+bc \right)+I \\ & \left( a+I \right)\left( c+I \right)+\left( b+I \right)\left( c+I \right)=\left( ac+I \right)+\left( bc+I \right)=\left( ac+bc \right)+I \\ \end{aligned} \right. {[(a+I)+(b+I)](c+I)=(a+b+I)(c+I)=(a+b)c+I=(ac+bc)+I(a+I)(c+I)+(b+I)(c+I)=(ac+I)+(bc+I)=(ac+bc)+I

商环命题

  1. R R R是含幺环 ⇒ \Rightarrow R / I R/I R/I也是含幺环 ;
    证明:
    首先显然有 R / I R/I R/I是一个环。故只要证明 ( R / I , × ) \left( R/I,\times \right) (R/I,×)是一个幺半群即可。
    R R R是含幺环,说明 ( R × ) \left( R\times \right) (R×)有乘法单位元 e e e满足 ∀ a ∈ R ,   a e = e a = a \forall a\in R,\text{ }ae=ea=a aR, ae=ea=a.
    考虑 { ( a + I ) ( e + I ) = a e + I = a + I ( e + I ) ( a + I ) = e a + I = a + I \left\{ \begin{aligned} & \left( a+I \right)\left( e+I \right)=ae+I=a+I \\ & \left( e+I \right)\left( a+I \right)=ea+I=a+I \\ \end{aligned} \right. {(a+I)(e+I)=ae+I=a+I(e+I)(a+I)=ea+I=a+I, 所以 e + I e+I e+I R / I R/I R/I是一个幺半群。

  2. R R R是交换环 ⇒ \Rightarrow R / I R/I R/I也是交换环 ;
    证明:
    首先显然有 R / I R/I R/I是一个环,故只要证明 ( R / I × ) \left( R/I\times \right) (R/I×)是一个交换半群即可。
    R R R是交换环 ⇒ ∀ a , b ∈ R ,   a b = b a \Rightarrow \forall a,b\in R,\text{ }ab=ba a,bR, ab=ba.
    考虑 { ( a + I ) ( b + I ) = a b + I ( b + I ) ( a + I ) = b a + I a b = b a ⇒ ( a + I ) ( b + I ) = ( b + I ) ( a + I ) \left\{ \begin{aligned} & \left( a+I \right)\left( b+I \right)=ab+I \\ & \left( b+I \right)\left( a+I \right)=ba+I \\ & ab=ba \\ \end{aligned} \right.\Rightarrow \left( a+I \right)\left( b+I \right)=\left( b+I \right)\left( a+I \right) (a+I)(b+I)=ab+I(b+I)(a+I)=ba+Iab=ba(a+I)(b+I)=(b+I)(a+I),
    所以 R / I R/I R/I是一个交换半群。

  3. R / I ≠ { 0 } R/I\ne \left\{ 0 \right\} R/I={0}的情况下,若 R / I R/I R/I是交换环, R R R不一定也是交换环。
    Proof:
    R / I R/I R/I is a commutative ring
    ⇒ ( a + I ) ( b + I ) = ( b + I ) ( a + I ) ,   ∀ a , b ∈ R ⇒ a b + I = b a + I ⇒ a b = b a   o r   a b ≠ b a \begin{aligned} & \Rightarrow \left( a+I \right)\left( b+I \right)=\left( b+I \right)\left( a+I \right),\text{ }\forall a,b\in R \\ & \Rightarrow ab+I=ba+I \\ & \Rightarrow ab=ba\text{ }or\text{ }ab\ne ba \\ \end{aligned} (a+I)(b+I)=(b+I)(a+I), a,bRab+I=ba+Iab=ba or ab=ba

    1. e.g.1 Let R = M n ( C ) R={{M}_{n}}\left( \mathbb{C} \right) R=Mn(C). ∀ M = ( m i j ) n × n ∈ R ,   m i j ∈ C \forall M={{\left( {{m}_{ij}} \right)}_{n\times n}}\in R,\text{ }{{m}_{ij}}\in \mathbb{C} M=(mij)n×nR, mijC, note that
      ∣ M ∣ = ( Re ⁡ [ m i j ] ) n × n . \left| M \right|={{\left( \operatorname{Re}\left[ {{m}_{ij}} \right] \right)}_{n\times n}}. M=(Re[mij])n×n.
      ∀ P = ( p i j ) n × n ,   Q = ( q i j ) n × n ∈ M n ( C ) ,   p i j , q i j ∈ C , \forall P={{\left( {{p}_{ij}} \right)}_{n\times n}},\text{ }Q={{\left( {{q}_{ij}} \right)}_{n\times n}}\in {{M}_{n}}\left( \mathbb{C} \right),\text{ }{{p}_{ij}},{{q}_{ij}}\in \mathbb{C}, P=(pij)n×n, Q=(qij)n×nMn(C), pij,qijC, define that
      P × Q : = ( t i j ) n × n ,   t i j = ∑ k = 1 n p i k q k j P\times Q:={{\left( {{t}_{ij}} \right)}_{n\times n}},\text{ }{{t}_{ij}}=\sum\limits_{k=1}^{n}{{{p}_{ik}}{{q}_{kj}}} P×Q:=(tij)n×n, tij=k=1npikqkj
      P ⊗ Q : = ∣ P ∣ × ∣ Q ∣ = ( w i j ) n × n ,   w i j = ∑ k = 1 n Re ⁡ [ p i k ] Re ⁡ [ q k j ] , P\otimes Q:=\left| P \right|\times \left| Q \right|={{\left( {{w}_{ij}} \right)}_{n\times n}},\text{ }{{w}_{ij}}=\sum\limits_{k=1}^{n}{\operatorname{Re}\left[ {{p}_{ik}} \right]\operatorname{Re}\left[ {{q}_{kj}} \right]}, PQ:=P×Q=(wij)n×n, wij=k=1nRe[pik]Re[qkj],
      P + Q : = ( v i j ) n × n ,   v i j = p i j + q i j . P+Q:={{\left( {{v}_{ij}} \right)}_{n\times n}},\text{ }{{v}_{ij}}={{p}_{ij}}+{{q}_{ij}}. P+Q:=(vij)n×n, vij=pij+qij.
      First we prove that ( R , ⊗ , + ) \left( R,\otimes ,+ \right) (R,,+) is a ring but not commutative for ⊗ \otimes .
      Obviously ( R , + ) \left( R,+ \right) (R,+) is an abelian group.
      ∀ U , V , W ∈ R \forall U,V,W\in R U,V,WR,
      U ⊗ V = ∣ U ∣ × ∣ V ∣ ∈ M n ( R ) ⊆ M n ( C ) , U\otimes V=\left| U \right|\times \left| V \right|\in {{M}_{n}}\left( \mathbb{R} \right)\subseteq {{M}_{n}}\left( \mathbb{C} \right), UV=U×VMn(R)Mn(C),
      thus ⊗ \otimes is closed.
        ( U ⊗ V ) ⊗ W = ∣   ∣ U ∣ × ∣ V ∣   ∣ × ∣ W ∣ = ( ∣ U ∣ × ∣ V ∣ ) × ∣ W ∣ = ∣ U ∣ × ( ∣ V ∣ × ∣ W ∣ ) = ∣ U ∣ × ∣   ∣ V ∣ × ∣ W ∣   ∣ = U ⊗ ( V ⊗ W ) , \begin{aligned} & \text{ }\left( U\otimes V \right)\otimes W \\ & =\left| \text{ }\left| U \right|\times \left| V \right|\text{ } \right|\times \left| W \right| \\ & =\left( \left| U \right|\times \left| V \right| \right)\times \left| W \right| \\ & =\left| U \right|\times \left( \left| V \right|\times \left| W \right| \right) \\ & =\left| U \right|\times \left| \text{ }\left| V \right|\times \left| W \right|\text{ } \right| \\ & =U\otimes \left( V\otimes W \right) \\ \end{aligned},  (UV)W= U×V ×W=(U×V)×W=U×(V×W)=U× V×W =U(VW),
      thus ⊗ \otimes is associated.
        ( U + V ) ⊗ W = ∣ U + V ∣ × ∣ W ∣ = ( ∣ U ∣ + ∣ V ∣ ) × ∣ W ∣ = ∣ U ∣ × ∣ W ∣ + ∣ V ∣ × ∣ W ∣ = U ⊗ W + V ⊗ W , \begin{aligned} & \text{ }\left( U+V \right)\otimes W \\ & =\left| U+V \right|\times \left| W \right| \\ & =\left( \left| U \right|+\left| V \right| \right)\times \left| W \right| \\ & =\left| U \right|\times \left| W \right|+\left| V \right|\times \left| W \right| \\ & =U\otimes W+V\otimes W \\ \end{aligned},  (U+V)W=U+V×W=(U+V)×W=U×W+V×W=UW+VW,
      U ⊗ ( V + W ) = ∣ U ∣ × ∣ V + W ∣ = ∣ U ∣ × ∣ V ∣ + ∣ U ∣ × ∣ W ∣ = U ⊗ V + U ⊗ W , U\otimes \left( V+W \right)=\left| U \right|\times \left| V+W \right|=\left| U \right|\times \left| V \right|+\left| U \right|\times \left| W \right|=U\otimes V+U\otimes W, U(V+W)=U×V+W=U×V+U×W=UV+UW,
      thus distribution law is satisfied.
      So we have proved that ( R , ⊗ , + ) \left( R,\otimes ,+ \right) (R,,+) is a ring, but ⊗ \otimes is obviously not commutative.
      Let I = M n ( R ) I={{M}_{n}}\left( \mathbb{R} \right) I=Mn(R), then obviously we have ( I , + ) \left( I,+ \right) (I,+) is an abelian group and
      I ⊗ R ⊆ I   &   R ⊗ I ⊆ I , I\otimes R\subseteq I\text{ }\And \text{ }R\otimes I\subseteq I, IRI & RII,
      thus I I I is an ideal of R R R.
      So we have the quotient ring R / I ≠ { 0 } R/I\ne \left\{ 0 \right\} R/I={0}. Then we want to prove that R / I R/I R/I is commutative for ⊗ \otimes .
      ∀ P , Q ∈ R \forall P,Q\in R P,QR, we have
      P ⊗ Q ,   Q ⊗ P ∈ I = M n ( R ) P\otimes Q,\text{ }Q\otimes P\in I={{M}_{n}}\left( \mathbb{R} \right) PQ, QPI=Mn(R)
      Take P   ⊗ Q P~\otimes Q P Q as an example, we point out that P ⊗ Q + I = I . P\otimes Q+I=I. PQ+I=I.
      P ⊗ Q ∈ I P\otimes Q\in I PQI & I I I is an ideal (also is a subring) ⇒ P ⊗ Q + I ⊆ I \Rightarrow P\otimes Q+I\subseteq I PQ+II.
      ( I , + ) \left( I,+ \right) (I,+) is an abelian group ⇒ \Rightarrow ∃ ( − P ⊗ Q ) ∈ I \exists \left( -P\otimes Q \right)\in I (PQ)I, and we have − P ⊗ Q + I ⊆ I -P\otimes Q+I\subseteq I PQ+II
      ⇒ I ⊆ P ⊗ Q + I \Rightarrow I\subseteq P\otimes Q+I IPQ+I.
      Thus we have P ⊗ Q + I = I . P\otimes Q+I=I. PQ+I=I.
      So we have
      P ⊗ Q + I = Q ⊗ P + I = I , P\otimes Q+I=Q\otimes P+I=I, PQ+I=QP+I=I,
      that is
      ( P + I ) ⊗ ( Q + I ) = ( Q + I ) ⊗ ( P + I ) , \left( P+I \right)\otimes \left( Q+I \right)=\left( Q+I \right)\otimes \left( P+I \right), (P+I)(Q+I)=(Q+I)(P+I),
      thus R / I R/I R/I is commutative for ⊗ \otimes .
      Thus we have the case where R R R is not commutative but R / I R/I R/I is commutative.
    2. e.g. 2. ( Z , + , × ) \left( \mathbb{Z},+,\times \right) (Z,+,×) obviously is a ring and a commutative ring.
      Consider the ideal I = 2 Z I=2\mathbb{Z} I=2Z.
      We have ∀ a , b ∈ Z ,   a b = b a \forall a,b\in \mathbb{Z},\text{ }ab=ba a,bZ, ab=ba ⇒ a b + I = b a + I \Rightarrow ab+I=ba+I ab+I=ba+I, that is
      ( a + I ) ( b + I ) = ( b + I ) ( a + I ) \left( a+I \right)\left( b+I \right)=\left( b+I \right)\left( a+I \right) (a+I)(b+I)=(b+I)(a+I)
      which shows that R / I \mathbb{R}/I R/I is a commutative ring.
      Thus we have the case where R / I   &   R R/I\text{ }\And \text{ }R R/I & R are both commutative rings.
  4. R / I ≠ { 0 } R/I\ne \left\{ 0 \right\} R/I={0}的情况下,若 R / I R/I R/I是含幺环, R R R不一定也是含幺环。
    Proof:
    R / I R/I R/I is a unital ring
    ⇒ ∃ c ∈ R ,   s . t .   ( a + I ) ( c + I ) = a + I ,   ∀ a ∈ R ⇒ a c + I = a + I ⇒ a c = a   o r   a c ≠ a \begin{aligned} & \Rightarrow \exists c\in R,\text{ }s.t.\text{ }\left( a+I \right)\left( c+I \right)=a+I,\text{ }\forall a\in R \\ & \Rightarrow ac+I=a+I \\ & \Rightarrow ac=a\text{ }or\text{ }ac\ne a \\ \end{aligned} cR, s.t. (a+I)(c+I)=a+I, aRac+I=a+Iac=a or ac=a

    1. e.g. 1. ( 3 Z , + , × ) \left( 3\mathbb{Z},+,\times \right) (3Z,+,×) is obviously a ring but not a unital ring. Consider the ideal I = 6 Z I=6\mathbb{Z} I=6Z, we have
      3 Z / 6 Z = { a + 6 Z ∣ a ∈ 3 Z } = {   { 3 ( n 1 + 2 n 2 ) }   ∣ n 1 , n 2 ∈ Z   } , 3\mathbb{Z}/6\mathbb{Z}=\left\{ \left. a+6\mathbb{Z} \right|a\in 3\mathbb{Z} \right\}=\left\{ \left. \text{ }\left\{ 3\left( {{n}_{1}}+2{{n}_{2}} \right) \right\}\text{ } \right|{{n}_{1}},{{n}_{2}}\in \mathbb{Z}\text{ } \right\}, 3Z/6Z={a+6Za3Z}={ {3(n1+2n2)} n1,n2Z },
      that is
      3 Z / 6 Z = { 0 ‾ , 1 ‾ } , 3\mathbb{Z}/6\mathbb{Z}=\left\{ \overline{0},\overline{1} \right\}, 3Z/6Z={0,1},
      in which ∀ b ∈ k ‾ ( k = 0 , 1 , 2 ) \forall b\in \overline{k}\left( k=0,1,2 \right) bk(k=0,1,2), b 3 ≡ k (   m o d   2 ) \frac{b}{3}\equiv k\left( \bmod 2 \right) 3bk(mod2). Obviously the unit of 3 Z / 6 Z 3\mathbb{Z}/6\mathbb{Z} 3Z/6Z is 1 ‾ \overline{1} 1.
      Thus we have the case where R R R is not a unital ring but R / I R/I R/I is a unital ring.

域(Field)

域的定义
  设 F F F是一个含幺交换环,若 ( F \ { 0 } , × ) \left( F\backslash \left\{ 0 \right\},\times \right) (F\{0},×)是群 (根据 F F F已经是一个含幺交换环可知同时也是阿贝尔群),则称 F F F是域。
(注:如此定义下域是一种具有加,减,乘,除运算的代数结构)

域的例子

  1. Q , R , C \mathbb{Q},\mathbb{R},\mathbb{C} Q,R,C是域, Z \mathbb{Z} Z不是域 ;
    注: ( Z \ { 0 } , × ) \left( \mathbb{Z}\backslash \left\{ 0 \right\},\times \right) (Z\{0},×)不满足可逆性,不是一个群。

  2. Z / P \mathbb{Z}/P Z/P P P P是素数时是域 ;
    证明:
    在这篇博文“环的例子”部分已经证明 ∀ P ∈ Z > 0 \forall P\in {{\mathbb{Z}}_{>0}} PZ>0 ( Z / P , + , × ) \left( \mathbb{Z}/P,+,\times \right) (Z/P,+,×)是一个含幺交换环。所以现只需证明当 P P P是素数时, ( Z / P \ { 0 ‾ } , × ) \left( \mathbb{Z}/P\backslash \left\{ \overline{0} \right\},\times \right) (Z/P\{0},×)是一个群即可。

    1. 运算封闭性: ∀ a ‾ , b ‾ ∈ [ ( Z / P ) \ { 0 ‾ } ] \forall \overline{a},\overline{b}\in \left[ \left( \mathbb{Z}/P \right)\backslash \left\{ \overline{0} \right\} \right] a,b[(Z/P)\{0}] a , b ∈ { 1 , 2 , . . . , P − 1 } a,b\in \left\{ 1,2,...,P-1 \right\} a,b{1,2,...,P1},根据算术基本定理, a b ab ab可以被分解成若干质因子的乘积且在不考虑顺序的意义下形式唯一。设 p a b {{p}_{ab}} pab a b ab ab的任意一个质因子,则有 p a b ≤ min ⁡ { a , b } < P {{p}_{ab}}\le \min \left\{ a,b \right\}<P pabmin{a,b}<P,所以有 p a b ≠ P {{p}_{ab}}\ne P pab=P,即 P P P不是 a b ab ab的质因子。 ∀ n ∈ Z > 0 \forall n\in {{\mathbb{Z}}_{>0}} nZ>0,素数 P P P n P nP nP的质因子,因此 a b ≠ n P ab\ne nP ab=nP,即 a b ≠ 0 (   m o d   P ) ab\ne 0\left( \bmod P \right) ab=0(modP),即 a ‾ b ‾ ≠ 0 ‾ \overline{a}\overline{b}\ne \overline{0} ab=0,所以有 a ‾ b ‾ ∈ [ ( Z / P ) \ { 0 ‾ } ] \overline{a}\overline{b}\in \left[ \left( \mathbb{Z}/P \right)\backslash \left\{ \overline{0} \right\} \right] ab[(Z/P)\{0}]
    2. 结合律:继承 ( Z / P , × ) \left( \mathbb{Z}/P,\times \right) (Z/P,×)的结合律。
    3. 单位元: 1 ‾ \overline{1} 1
    4. 可逆性: ∀ a ‾ ∈ [ ( Z / P ) \ { 0 ‾ } ] ,   a ∈ { 1 , 2 , . . . , P − 1 } \forall \overline{a}\in \left[ \left( \mathbb{Z}/P \right)\backslash \left\{ \overline{0} \right\} \right],\text{ }a\in \left\{ 1,2,...,P-1 \right\} a[(Z/P)\{0}], a{1,2,...,P1}
      a = 1 a=1 a=1时显然存在 1 ‾ \overline{1} 1,使得 a ‾ ⋅ 1 ‾ = 1 ‾ ⋅ a ‾ = 1 ‾ \overline{a}\centerdot \overline{1}=\overline{1}\centerdot \overline{a}=\overline{1} a1=1a=1
      a > 1 a>1 a>1时,考虑集合
      G : = { n P = b a + c ∣ n = 1 , 2 , . . . , a − 1 ,   1 ≤ b ≤ P − 2 ,   0 ≤ c ≤ a − 1 ,   b , c ∈ Z } G:=\left\{ \left. nP=ba+c \right|n=1,2,...,a-1,\text{ }1\le b\le P-2,\text{ }0\le c\le a-1,\text{ }b,c\in \mathbb{Z} \right\} G:={nP=ba+cn=1,2,...,a1, 1bP2, 0ca1, b,cZ}
      (注意 b ≠ P − 1 b\ne P-1 b=P1,因为 c = max ⁡ { G } − ( P − 1 ) a = ( a − 1 ) P − ( P − 1 ) a = a − P < 0 c=\max \left\{ G \right\}-\left( P-1 \right)a=\left( a-1 \right)P-\left( P-1 \right)a=a-P<0 c=max{G}(P1)a=(a1)P(P1)a=aP<0
      考虑 G G G中的元素 n P = b a + c nP=ba+c nP=ba+c
      在这里插入图片描述
      我们指出,对于 n 1 P = b 1 a + c 1 {{n}_{1}}P={{b}_{1}}a+{{c}_{1}} n1P=b1a+c1 n 2 P = b 2 a + c 2 {{n}_{2}}P={{b}_{2}}a+{{c}_{2}} n2P=b2a+c2,若 n 1 ≠ n 2 {{n}_{1}}\ne {{n}_{2}} n1=n2,则有 c 1 ≠ c 2 {{c}_{1}}\ne {{c}_{2}} c1=c2
      不妨令 n 2 > n 1 {{n}_{2}}>{{n}_{1}} n2>n1 c 1 = c 2 {{c}_{1}}={{c}_{2}} c1=c2,则有
      n 2 P − n 1 P = ( b 2 a + c 2 ) − ( b 1 a + c 1 ) ⇒ ( n 2 − n 1 ) P = ( b 2 − b 1 ) a ,   1 ≤ b 2 − b 1 ≤ P − 2 \begin{matrix} {{n}_{2}}P-{{n}_{1}}P=\left( {{b}_{2}}a+{{c}_{2}} \right)-\left( {{b}_{1}}a+{{c}_{1}} \right) \\ \Rightarrow \left( {{n}_{2}}-{{n}_{1}} \right)P=\left( {{b}_{2}}-{{b}_{1}} \right)a,\text{ }1\le {{b}_{2}}-{{b}_{1}}\le P-2 \\ \end{matrix} n2Pn1P=(b2a+c2)(b1a+c1)(n2n1)P=(b2b1)a, 1b2b1P2
      这与前面已证明的“素数 P P P不是 ( b 2 − b 1 ) a \left( {{b}_{2}}-{{b}_{1}} \right)a (b2b1)a的质因子”产生矛盾。
      所以在集合 G G G里我们可构建单射
      f : { n } ↦ { c } n ↦ c f:\begin{matrix} \left\{ n \right\} & \mapsto & \left\{ c \right\} \\ n & \mapsto & c \\ \end{matrix} f:{n}n{c}c
      ⇒ # { n } ≤ # { c } \Rightarrow \#\left\{ n \right\}\le \#\left\{ c \right\} #{n}#{c}
      G = { 1 , 2 , . . . , ( a − 1 ) P } G=\left\{ 1,2,...,\left( a-1 \right)P \right\} G={1,2,...,(a1)P}中,显然有 # { n } = # G = a − 1 \#\left\{ n \right\}=\#G=a-1 #{n}=#G=a1.
      P P P不是 a b ab ab的质因数以及 c = n P − b a ∈ Z c=nP-ba\in \mathbb{Z} c=nPbaZ, 0 ≤ c ≤ a − 1 0\le c\le a-1 0ca1得到
      c ∈ { 1 , 2 , . . . , a − 1 } ⇒ # { c } ≤ a − 1 c\in \left\{ 1,2,...,a-1 \right\}\Rightarrow \#\left\{ c \right\}\le a-1 c{1,2,...,a1}#{c}a1
      所以有 a − 1 ≤ # { c } ≤ a − 1   ⇒    ⁣ ⁣ #  ⁣ ⁣   { c } = a − 1 a-1\le \#\left\{ c \right\}\le a-1\text{ }\Rightarrow \text{ }\!\!\#\!\!\text{ }\left\{ c \right\}=a-1 a1#{c}a1  # {c}=a1,即有
      { c } = { 1 , . . . , a − 1 } \left\{ c \right\}=\left\{ 1,...,a-1 \right\} {c}={1,...,a1}
      所以 ∃ n ′ ∈ { 1 , 2 , . . . , a − 1 } , b ′ ∈ { 1 , 2 , . . . , P − 2 } , \exists n'\in \left\{ 1,2,...,a-1 \right\},b'\in \left\{ 1,2,...,P-2 \right\}, n{1,2,...,a1},b{1,2,...,P2},使得
      n ′ P = b ′ a + ( a − 1 ) ⇒ n ′ P + 1 = ( b ′ + 1 ) a ,   b ′ + 1 ∈ { 2 , 3 , . . . , P − 1 } \begin{matrix} n'P=b'a+\left( a-1 \right) \\ \Rightarrow n'P+1=\left( b'+1 \right)a,\text{ }b'+1\in \left\{ 2,3,...,P-1 \right\} \\ \end{matrix} nP=ba+(a1)nP+1=(b+1)a, b+1{2,3,...,P1}
      所以 a ( b ′ + 1 ) = ( b ′ + 1 ) a ≡ 1 (   m o d   P ) a\left( b'+1 \right)=\left( b'+1 \right)a\equiv 1\left( \bmod P \right) a(b+1)=(b+1)a1(modP),即存在 b ′ + 1 ‾ \overline{b'+1} b+1,使得 a ‾ ⋅ b ′ + 1 ‾ = b ′ + 1 ‾ ⋅ a ‾ = 1 ‾ \overline{a}\centerdot \overline{b'+1}=\overline{b'+1}\centerdot \overline{a}=\overline{1} ab+1=b+1a=1
      可逆性得证。

所以 ( Z / P \ { 0 ‾ } , × ) \left( \mathbb{Z}/P\backslash \left\{ \overline{0} \right\},\times \right) (Z/P\{0},×)是一个群。所以 P P P是素数时 ( Z / P , + , × ) \left( \mathbb{Z}/P,+,\times \right) (Z/P,+,×)是域。

  1. R ( x ) \mathbb{R}\left( x \right) R(x)是一个域,并且实系数有理函数(rational function)全体 { P ( x ) Q ( x ) } \left\{ \frac{P\left( x \right)}{Q\left( x \right)} \right\} {Q(x)P(x)}(其中 P ( x ) ,   Q ( x ) P\left( x \right),\text{ }Q\left( x \right) P(x), Q(x)是实系数多项式)构成一个域;

  2. C \mathbb{C} C上的亚纯函数 全体构成一个域;
    说明:亚纯函数(meromorphic function)是在区域 D ∈ C n D\in {{\mathbb{C}}^{n}} DCn上有定义,且除去极点之外处处解析的函数。
    每个 D D D上的亚纯函数可以表达为两个全纯函数(holomorphic function)的比, 极点也就是分母的零点。亚纯函数可表示为 P ( x ) Q ( x ) ⋅ R ( x ) \frac{P\left( x \right)}{Q\left( x \right)}\centerdot R\left( x \right) Q(x)P(x)R(x),其中 R ( x ) R\left( x \right) R(x)无极点和零点。
    亚纯函数百度百科

域的命题

  1. F F F是一个域,则它的理想只有 { 0 } \left\{ 0 \right\} {0} F F F
    证明:
    I ⊆ F I\subseteq F IF
    1. I ≠ { 0 } I\ne \left\{ 0 \right\} I={0}是一个 F F F的理想。
      ∀ a ∈ I ,   a ≠ 0 \forall a\in I,\text{ }a\ne 0 aI, a=0,有 a ∈ F   &   a ≠ 0 a\in F\text{ }\And \text{ }a\ne 0 aF & a=0
      ( F \ { 0 } , × ) \left( F\backslash \left\{ 0 \right\},\times \right) (F\{0},×)是一个群,则
      ⇒ ∃ 1 a ∈ F ,   s . t .   a ⋅ 1 a = 1 \Rightarrow \exists \frac{1}{a}\in F,\text{ }s.t.\text{ }a\centerdot \frac{1}{a}=1 a1F, s.t. aa1=1.
      根据理想 I I I的乘法吸收律: I F ⊆ I IF\subseteq I IFI,得 a ⋅ 1 a ∈ I a\centerdot \frac{1}{a}\in I aa1I,即 1 ∈ I 1\in I 1I.
      ⇒ ∀ b ∈ F ,   1 ⋅ b = b ⊆ I \Rightarrow \forall b\in F,\text{ }1\centerdot b=b\subseteq I bF, 1b=bI
      ⇒ F ⊆ I \Rightarrow F\subseteq I FI
      ⇒ F = I \Rightarrow F=I F=I.
      验证: F F F本身确实是一个理想(理论根据:对于一个环 R R R, { 0 } \left\{ 0 \right\} {0} R R R都是其理想)。
    2. I = { 0 } I\text{=}\left\{ 0 \right\} I={0}很显然是域 F F F的理想。
  2. 域一定是整环;
    证明:由群 ( F \ { 0 } , × ) \left( F\backslash \left\{ 0 \right\},\times \right) (F\{0},×)的运算封闭性可得。
  3. 成立华罗庚等式:
    ( ( a − b − 1 ) − 1 − a − 1 ) − 1 = a b a − a ; {{\left( {{\left( a-{{b}^{-1}} \right)}^{-1}}-{{a}^{-1}} \right)}^{-1}}=aba-a ; ((ab1)1a1)1=abaa
    证明:
    考虑式子
      ( ( a − b − 1 ) − 1 − a − 1 ) ( a b a − a ) = ( a − b − 1 ) − 1 a b a + a − 1 a − ( a − b − 1 ) − 1 a − a − 1 a b a = ( a − b − 1 ) − 1 ( a b a − a ) + 1 − b a = ( a − b − 1 ) − 1 [ ( a − b − 1 ) b a ] + 1 − b a = b a + 1 − b a = 1 \begin{aligned} & \text{ }\left( {{\left( a-{{b}^{-1}} \right)}^{-1}}-{{a}^{-1}} \right)\left( aba-a \right) \\ & ={{\left( a-{{b}^{-1}} \right)}^{-1}}aba+{{a}^{-1}}a-{{\left( a-{{b}^{-1}} \right)}^{-1}}a-{{a}^{-1}}aba \\ & ={{\left( a-{{b}^{-1}} \right)}^{-1}}\left( aba-a \right)+1-ba \\ & ={{\left( a-{{b}^{-1}} \right)}^{-1}}\left[ \left( a-{{b}^{-1}} \right)ba \right]+1-ba \\ & =ba+1-ba \\ & =1 \\ \end{aligned}  ((ab1)1a1)(abaa)=(ab1)1aba+a1a(ab1)1aa1aba=(ab1)1(abaa)+1ba=(ab1)1[(ab1)ba]+1ba=ba+1ba=1
    注:推导过程中要注意由于 ( F \ { 0 } , × ) \left( F\backslash \left\{ 0 \right\},\times \right) (F\{0},×)只是一个群而不一定是交换群,因此不要出现类似 a b = b a ab=ba ab=ba的推导。

模(Module)

模的定义
   ( R , ⊕ , ⊗ ) \left( R,\oplus ,\otimes \right) (R,,)是一个含幺环 ,一个左 R - R\text{-} R-模是指一个阿贝尔群 ( M , + ) \left( M,+ \right) (M,+)连同一个映射 φ : R ⊙ M → M \varphi :R\odot M\to M φ:RMM满足以下性质:
1) φ ( r 1 ⊕ r 2 , m ) = φ ( r 1 , m ) + φ ( r 2 , m ) \varphi \left( {{r}_{1}}\oplus{{r}_{2}},m \right)=\varphi \left( {{r}_{1}},m \right)+\varphi \left( {{r}_{2}},m \right) φ(r1r2,m)=φ(r1,m)+φ(r2,m),简写为 ( r 1 ⊕ r 2 ) m = r 1 m + r 2 m \left( {{r}_{1}}\oplus{{r}_{2}} \right)m={{r}_{1}}m+{{r}_{2}}m (r1r2)m=r1m+r2m(映射分配律1);
2) φ ( r , m 1 + m 2 ) = φ ( r , m 1 ) + φ ( r , m 2 ) \varphi \left( r,{{m}_{1}}+{{m}_{2}} \right)=\varphi \left( r,{{m}_{1}} \right)+\varphi \left( r,{{m}_{2}} \right) φ(r,m1+m2)=φ(r,m1)+φ(r,m2),简写为 r ( m 1 + m 2 ) = r m 1 + r m 2 r\left( {{m}_{1}}+{{m}_{2}} \right)=r{{m}_{1}}+r{{m}_{2}} r(m1+m2)=rm1+rm2(映射分配律2);
3) φ ( r 1 , φ ( r 2 , m ) ) = φ ( r 1 r 2 , m ) \varphi \left( {{r}_{1}},\varphi \left( {{r}_{2}},m \right) \right)=\varphi \left( {{r}_{1}}{{r}_{2}},m \right) φ(r1,φ(r2,m))=φ(r1r2,m),简写为 r 1 ( r 2 m ) = ( r 1 r 2 ) m {{r}_{1}}\left( {{r}_{2}}m \right)=\left( {{r}_{1}}{{r}_{2}} \right)m r1(r2m)=(r1r2)m(映射结合律);
4) φ ( 1 , m ) = m \varphi \left( 1,m \right)=m φ(1,m)=m(映射单位性质)。
可类似定义右 R - R\text{-} R-模。
注: R R R是含幺环才有乘法单位元,才有性质4中的 φ ( 1 , m ) = m \varphi \left( 1,m \right)=m φ(1,m)=m中的1。

模的例子

  1. R R R是域,则 R - R\text{-} R-模: ( R , φ ) \left( R,\varphi \right) (R,φ) R R R上的线性空间(向量空间/数组空间),其中 φ : R × R n → R n r × ( r 1 , r 2 , . . . , r n ) T → ( r r 1 , r r 2 , . . . , r r n ) T , \varphi :\begin{matrix} R & \times & {{R}^{n}} & \to & {{R}^{n}} \\ r & \times & {{\left( {{r}_{1}},{{r}_{2}},...,{{r}_{n}} \right)}^{T}} & \to & {{\left( r{{r}_{1}},r{{r}_{2}},...,r{{r}_{n}} \right)}^{T}} \\ \end{matrix}, φ:Rr××Rn(r1,r2,...,rn)TRn(rr1,rr2,...,rrn)T, × \times ×继承于含幺环 ( R , + , × ) \left( R,+ ,\times \right) (R,+,×)
    注:

    1. n n n维数组空间(线性空间)定义:
        数域 K K K上的 n n n维数组向量构成的集合,以及线性运算加法和数乘构成数域 K K K上的 n n n维数组空间,记为 K n {{K}^{n}} Kn。数组空间可以理解为 K × K n → K n K\times {{K}^{n}}\to {{K}^{n}} K×KnKn. 其中
      线性运算加法: ∀ α , β , γ ∈ K n \forall \alpha ,\beta ,\gamma \in {{K}^{n}} α,β,γKn,
      1.结合律: ( α + β ) + γ = α + ( β + γ ) \left( \alpha +\beta \right)+\gamma =\alpha +\left( \beta +\gamma \right) (α+β)+γ=α+(β+γ)
      2.交换律: α + β = β + α \alpha +\beta =\beta +\alpha α+β=β+α
      3.存在零元素: α + 0 = α \alpha +0=\alpha α+0=α
      4.存在负元素: α + ( − α ) = 0 \alpha +\left( -\alpha \right)=0 α+(α)=0
      数乘: ∀ α ∈ K n ,   ∀ k , l ∈ K \forall \alpha \in {{K}^{n}},\text{ }\forall k,l\in K αKn, k,lK
      1.“1”乘向量: 1 α = α 1\alpha =\alpha 1α=α
      2.结合律: ( k l ) α = k ( l α ) \left( kl \right)\alpha =k\left( l\alpha \right) (kl)α=k(lα)
      混合运算:
      1.分配律一: ( k + l ) α = k α + l α \left( k+l \right)\alpha =k\alpha +l\alpha (k+l)α=kα+lα
      2.分配律二: k ( α + β ) = k α + k β k\left( \alpha +\beta \right)=k\alpha +k\beta k(α+β)=kα+kβ.

    2. 具体到 R R R上的线性空间 R - R\text{-} R-模,对于 R n R^n Rn中的每个维度,线性运算加法的四条性质由阿贝尔群 ( R , + ) \left( R,+\right) (R,+)本身给出,数乘和分配律由模的定义给出。因此可得 R - R\text{-} R-模是一个线性空间: R × R n → R n R\times R^n\to R^n R×RnRn.

  2. 含幺环 R R R的理想 I I I均为 R - R\text{-} R-模,特别地, R R R R - R\text{-} R-模;
    证明:
    I I I R R R的理想 ⇒ \Rightarrow R × I → I R\times I\to I R×II,其中 × \times ×继承于含幺环 ( R , + , × ) \left( R,+ ,\times \right) (R,+,×)
    I I I是环 R R R的理想,所以 I I I也是一个环,模定义中的四条性质均由环的定义即可证得,注意性质4中 φ ( 1 , m ) = m \varphi \left( 1,m \right)=m φ(1,m)=m中的单位元 1 1 1来源于含幺环 R R R.
    推论:

    1. Z / n \mathbb{Z}/n Z/n Z - \mathbb{Z}\text{-} Z-模;
      注: Z / n \mathbb{Z}/n Z/n是含幺环 ( Z , + , × ) \left( \mathbb{Z},+,\times \right) (Z,+,×)的理想。
  3. 所有的阿贝尔群都是 Z - \mathbb{Z}\text{-} Z-模。
    证明:对含幺环 ( Z , + , × ) \left( \mathbb{Z},+,\times \right) (Z,+,×)和任意阿贝尔群 M M M,构建映射
    φ : Z ⊗ M → M k ⊗ m → m + m + . . . + m ⏟ ∣ k ∣   ⋅   s g n ( k ) \varphi :\begin{matrix} \mathbb{Z} & \otimes & M & \to & M \\ k & \otimes & m & \to & \underbrace{m+m+...+m}_{\left| k \right|}\text{ }\centerdot \text{ }sgn \left( k \right) \\ \end{matrix} φ:ZkMmMk m+m+...+m  sgn(k)
    其中 m + m + . . . + m ⏟ ∣ k ∣ \underbrace{m+m+...+m}_{\left| k \right|} k m+m+...+m中的 + + +来源于含幺环 ( Z , + , × ) \left( \mathbb{Z},+,\times \right) (Z,+,×),则模的四条性质均可显然验证得到。

子模(Submodule)

子模定义
   ( M , φ ) \left( M,\varphi \right) (M,φ)是一个 R - R\text{-} R-模,其中 φ : R ⊙ M → M \varphi :\begin{matrix} R & \odot & M & \to & M \\ \end{matrix} φ:RMM,对 N < M N<M N<M,若 φ \varphi φ还满足 φ : R ⊙ N → N \varphi :\begin{matrix} R & \odot & N & \to & N \\ \end{matrix} φ:RNN ,则 ( N , φ ) \left( N,\varphi \right) (N,φ)也是一个 R - R\text{-} R-模,称为 M M M的子模。
注:

  1. φ : R ⊙ M → M \varphi :\begin{matrix} R & \odot & M & \to & M \\ \end{matrix} φ:RMM不一定就有 φ : R ⊙ N → N \varphi :\begin{matrix} R & \odot & N & \to & N \\ \end{matrix} φ:RNN
    反例:
      令 R = ( R , + , × ) R=\left( \mathbb{R},+,\times \right) R=(R,+,×) M = ( R 2 , + ) M=\left( {{\mathbb{R}}^{2}},+ \right) M=(R2,+) N = ( { ( r 1 , z ) T ∣ r 1 ∈ R , z ∈ Z } , + ) < M N=\left( \left\{ \left. {{\left( {{r}_{1}},z \right)}^{T}} \right|{{r}_{1}}\in \mathbb{R},z\in \mathbb{Z} \right\},+ \right)<M N=({(r1,z)Tr1R,zZ},+)<M,映射 φ : R ⊙ M → M r ⊙ ( r 1 , r 2 ) T → ( r r 1 , r r 2 ) T \varphi :\begin{matrix} R & \odot & M & \to & M \\ r & \odot & {{\left( {{r}_{1}},{{r}_{2}} \right)}^{T}} & \to & {{\left( r{{r}_{1}},r{{r}_{2}} \right)}^{T}} \\ \end{matrix} φ:RrM(r1,r2)TM(rr1,rr2)T考虑
    R ⊙ N = { ( r r 1 , r z ) ∣ r , r 1 ∈ R ,   z ∈ Z } R\odot N=\left\{ \left. \left( r{{r}_{1}},rz \right) \right|r,{{r}_{1}}\in \mathbb{R},\text{ }z\in \mathbb{Z} \right\} RN={(rr1,rz)r,r1R, zZ}
    ∃ r z ∉ Z   ⇒   R ⊙ N → N \exists rz\notin \mathbb{Z}\text{ }\Rightarrow \text{ }R\odot N\to N rz/Z  RNN不满足。

  2. 事实上根据模性质第4条的映射单位性质起码可得 N ⊆ R ⊙ N N\subseteq R\odot N NRN

子模性质

  1. 两个子模的交依然是子模;
    证明:
    ( M , φ ) \left( M,\varphi \right) (M,φ)是一个 R - R\text{-} R-模,任取阿贝尔群 M M M的两个子群 N 1 , N 2 {{N}_{1}},{{N}_{2}} N1,N2,若 ( N 1 , φ ) ,   ( N 2 , φ ) \left( {{N}_{1}},\varphi \right),\text{ }\left( {{N}_{2}},\varphi \right) (N1,φ), (N2,φ)均为 M M M的子模,我们要证明 ( N 1 ⋂ N 2 , φ ) \left( {{N}_{1}}\bigcap {{N}_{2}},\varphi \right) (N1N2,φ)也是一个 R - R\text{-} R-模。
    先证明 N 1 ⋂ N 2 {{N}_{1}}\bigcap {{N}_{2}} N1N2 M M M的一个交换子群。
    ∀ g 1 , g 2 ∈ ( N 1 ⋂ N 2 ) \forall {{g}_{1}},{{g}_{2}}\in \left( {{N}_{1}}\bigcap {{N}_{2}} \right) g1,g2(N1N2),由子群 N 1 , N 2 {{N}_{1}},{{N}_{2}} N1,N2的运算封闭性有 g 1 g 2 ∈ N 1   ∧   g 1 g 2 ∈ N 2 {{g}_{1}}{{g}_{2}}\in {{N}_{1}}\text{ }\wedge \text{ }{{g}_{1}}{{g}_{2}}\in {{N}_{2}} g1g2N1  g1g2N2,所以有 g 1 g 2 ∈ ( N 1 ⋂ N 2 ) {{g}_{1}}{{g}_{2}}\in \left( {{N}_{1}}\bigcap {{N}_{2}} \right) g1g2(N1N2)
    结合律和交换律:继承 N 1 , N 2 {{N}_{1}},{{N}_{2}} N1,N2的结合律和交换律。
    单位元: e ∈ N 1 ( & e ∈ N 2 & e ∈ M ) e\in {{N}_{1}}\left( \And e\in {{N}_{2}}\And e\in M \right) eN1(&eN2&eM)
    可逆性: ∀ g ∈ ( N 1 ⋂ N 2 ) \forall g\in \left( {{N}_{1}}\bigcap {{N}_{2}} \right) g(N1N2),有 g ∈ N 1 ∧ g ∈ N 2   ∧   g ∈ M g\in {{N}_{1}}\wedge g\in {{N}_{2}}\text{ }\wedge \text{ }g\in M gN1gN2  gM,所以 ∃ g ( 1 ) − 1 ∈ N 1 ,   g ( 2 ) − 1 ∈ N 2 \exists g_{\left( 1 \right)}^{-1}\in {{N}_{1}},\text{ }g_{\left( 2 \right)}^{-1}\in {{N}_{2}} g(1)1N1, g(2)1N2 g − 1 ∈ M {{g}^{-1}}\in M g1M使得 e = g g − 1 = g g ( 1 ) − 1 = g g ( 2 ) − 1 . e=g{{g}^{-1}}=gg_{\left( 1 \right)}^{-1}=gg_{\left( 2 \right)}^{-1}. e=gg1=gg(1)1=gg(2)1.
    { g ( 1 ) − 1 ∈ N 1 ⊆ M   ∧   g − 1 ∈ M   ⇒   g ( 1 ) − 1 = g − 1 g ( 2 ) − 1 ∈ N 2 ⊆ M   ∧   g − 1 ∈ M   ⇒   g ( 2 ) − 1 = g − 1 , \left\{ \begin{aligned} & g_{\left( 1 \right)}^{-1}\in {{N}_{1}}\subseteq M\text{ }\wedge \text{ }{{g}^{-1}}\in M\text{ }\Rightarrow \text{ }g_{\left( 1 \right)}^{-1}={{\text{g}}^{-1}} \\ & g_{\left( 2 \right)}^{-1}\in {{N}_{2}}\subseteq M\text{ }\wedge \text{ }{{g}^{-1}}\in M\text{ }\Rightarrow \text{ }g_{\left( 2 \right)}^{-1}={{\text{g}}^{-1}} \\ \end{aligned} \right., g(1)1N1M  g1M  g(1)1=g1g(2)1N2M  g1M  g(2)1=g1,
    所以 ∀ g ∈ ( N 1 ⋂ N 2 ) \forall g\in \left( {{N}_{1}}\bigcap {{N}_{2}} \right) g(N1N2) ∃ ! g − 1 ∈ ( N 1 ∩ N 2 ) \exists !{{g}^{-1}}\in \left( {{N}_{1}}\cap {{N}_{2}} \right) !g1(N1N2) s . t .   g g − 1 = e s.t.\text{ }g{{g}^{-1}}=e s.t. gg1=e.
    所以证得 N 1 ⋂ N 2 {{N}_{1}}\bigcap {{N}_{2}} N1N2 M M M的一个交换子群。
    至于 R - R\text{-} R- ( N 1 ⋂ N 2 , φ ) \left( {{N}_{1}}\bigcap {{N}_{2}},\varphi \right) (N1N2,φ)的四个条件,直接继承于 R - R\text{-} R- ( M , φ ) \left( M,\varphi \right) (M,φ)

  2. 两个子模的并不一定是子模。
    反例:
    考虑含幺环 R = ( R , + , × ) R=\left( \mathbb{R},+,\times \right) R=(R,+,×) M = ( R 2 , + ) M=\left( {{\mathbb{R}}^{2}},+ \right) M=(R2,+) N 1 = { ( r 1 , 0 ) T ∣ r 1 ∈ R } {{N}_{1}}=\left\{ \left. {{\left( {{r}_{1}},0 \right)}^{T}} \right|{{r}_{1}}\in \mathbb{R} \right\} N1={(r1,0)Tr1R} N 2 = { ( 0 , r 2 ) T ∣ r 2 ∈ R } {{N}_{2}}=\left\{ \left. {{\left( 0,{{r}_{2}} \right)}^{T}} \right|{{r}_{2}}\in \mathbb{R} \right\} N2={(0,r2)Tr2R},映射 φ : R × R 2 → R 2 r × ( r 1 , r 2 ) T → ( r r 1 , r r 2 ) T \varphi :\begin{matrix} R & \times & {{R}^{2}} & \to & {{R}^{2}} \\ r & \times & {{\left( {{r}_{1}},{{r}_{2}} \right)}^{T}} & \to & {{\left( r{{r}_{1}},r{{r}_{2}} \right)}^{T}} \\ \end{matrix} φ:Rr××R2(r1,r2)TR2(rr1,rr2)T,则显然有 ( M , φ ) \left( M,\varphi \right) (M,φ)是一个 R - R\text{-} R-模, ( N 1 , φ ) , ( N 2 , φ ) \left( {{N}_{1}},\varphi \right),\left( {{N}_{2}},\varphi \right) (N1,φ),(N2,φ) M M M的子模(分别对应于平面直角坐标系中的 x x x轴和 y y y轴)。但是 ( N 1 ⋃ N 2 , φ ) \left( {{N}_{1}}\bigcup {{N}_{2}},\varphi \right) (N1N2,φ)并不是一个 R - R\text{-} R-模,事实上 N 1 ⋃ N 2 = { ( r 1 , r 2 ) T ∣ r 1 = 0   o r   r 2 = 0 } {{N}_{1}}\bigcup {{N}_{2}}=\left\{ \left. {{\left( {{r}_{1}},{{r}_{2}} \right)}^{T}} \right|{{r}_{1}}=0\text{ }or\text{ }{{r}_{2}}=0 \right\} N1N2={(r1,r2)Tr1=0 or r2=0}不是一个群。取 ( 1 , 0 ) T ∈ N 1 ,   ( 0 , 1 ) T ∈ N 2 {{\left( 1,0 \right)}^{T}}\in {{N}_{1}},\text{ }{{\left( 0,1 \right)}^{T}}\in {{N}_{2}} (1,0)TN1, (0,1)TN2,则有 ( 1 , 0 ) T + ( 0 , 1 ) T = ( 1 , 1 ) T ∉ ( N 1 ⋃ N 2 ) {{\left( 1,0 \right)}^{T}}+{{\left( 0,1 \right)}^{T}}={{\left( 1,1 \right)}^{T}}\notin \left( {{N}_{1}}\bigcup {{N}_{2}} \right) (1,0)T+(0,1)T=(1,1)T/(N1N2),不满足群的运算封闭性。

子模例子

  1. 子空间是子模。

商模(Quotient Module)

商模定义
   ( M , + ) \left( M,+ \right) (M,+)是一个阿贝尔群, ( M , φ ) \left( M,\varphi \right) (M,φ)是一个 R - R\text{-} R-模, ( N , φ ) \left( N,\varphi \right) (N,φ) M M M的子模,其中 φ : R ⊙ M → M r ⊙ m 1 → m 2 \varphi :\begin{matrix} R & \odot & M & \to & M \\ r & \odot & {{m}_{1}} & \to & {{m}_{2}} \\ \end{matrix} φ:RrMm1Mm2
此时 ( M / N , ψ ) \left( M/N,\psi \right) (M/N,ψ) 也是一个模,其中 ψ : R ∗ M / N → M / N r ∗ m 1 + N → m 2 + N \psi :\begin{matrix} R & * & M/N & \to & M/N \\ r & * & {{m}_{1}}+N & \to & {{m}_{2}}+N \\ \end{matrix} ψ:RrM/Nm1+NM/Nm2+N,称为 M M M N N N的商模。
注:

  1. 这里的 M / N = { m + N ∣ m ∈ M } M/N=\left\{ \left. m+N \right|m\in M \right\} M/N={m+NmM}
  2. 验证商模是模如下。
    Proof:
    Let ( M , + ) \left( M,+ \right) (M,+) be one commutative group, ( M , φ ) \left( M,\varphi \right) (M,φ) is an R-module, N < M N<M N<M & ( N , φ ) \left( N,\varphi \right) (N,φ) is a submodule of ( M , φ ) \left( M,\varphi \right) (M,φ), in which φ : R ⊙ M → M r ⊙ m 1 → m 2 \varphi :\begin{matrix} R & \odot & M & \to & M \\ r & \odot & {{m}_{1}} & \to & {{m}_{2}} \\ \end{matrix} φ:RrMm1Mm2. Consider ( M / N , ψ ) \left( M/N,\psi \right) (M/N,ψ), in which M / N = { m ‾ = m + N ∣ m ∈ N } M/N=\left\{ \left. \overline{m}=m+N \right|m\in N \right\} M/N={m=m+NmN} and ψ ≅ φ : R ∗ M / N → M / N r ∗ m 1 ‾ → m 2 ‾ \psi \cong \varphi :\begin{matrix} R & * & M/N & \to & M/N \\ r & * & \overline{{{m}_{1}}} & \to & \overline{{{m}_{2}}} \\ \end{matrix} ψφ:RrM/Nm1M/Nm2.
      First we prove that ( M / N , + ) \left( M/N,+ \right) (M/N,+) is a commutative group.
    Commutativity law: ∀ m 1 , m 2 ∈ M \forall {{m}_{1}},{{m}_{2}}\in M m1,m2M,
    { ( m 1 + N ) + ( m 2 + N ) = ( m 1 + m 2 ) + ( N + N ) = ( m 1 + m 2 ) + N ( m 2 + N ) + ( m 1 + N ) = ( m 2 + m 1 ) + ( N + N ) = ( m 2 + m 1 ) + N m 1 + m 2 = m 2 + m 1 \left\{ \begin{aligned} & \left( {{m}_{1}}+N \right)+\left( {{m}_{2}}+N \right)=\left( {{m}_{1}}+{{m}_{2}} \right)+\left( N+N \right)=\left( {{m}_{1}}+{{m}_{2}} \right)+N \\ & \left( {{m}_{2}}+N \right)+\left( {{m}_{1}}+N \right)=\left( {{m}_{2}}+{{m}_{1}} \right)+\left( N+N \right)=\left( {{m}_{2}}+{{m}_{1}} \right)+N \\ & {{m}_{1}}+{{m}_{2}}={{m}_{2}}+{{m}_{1}} \\ \end{aligned} \right. (m1+N)+(m2+N)=(m1+m2)+(N+N)=(m1+m2)+N(m2+N)+(m1+N)=(m2+m1)+(N+N)=(m2+m1)+Nm1+m2=m2+m1
    ⇒ m 1 ‾ + m 2 ‾ = m 2 ‾ + m 1 ‾ \Rightarrow \overline{{{m}_{1}}}+\overline{{{m}_{2}}}=\overline{{{m}_{2}}}+\overline{{{m}_{1}}} m1+m2=m2+m1.
    Association law: ∀ m 1 , m 2 , m 3 ∈ M \forall {{m}_{1}},{{m}_{2}},{{m}_{3}}\in M m1,m2,m3M,
    ( m 1 ‾ + m 2 ‾ ) + m 3 ‾ = m 1 ‾ + ( m 2 ‾ + m 3 ‾ ) = ( m 1 + m 2 + m 3 ) + N \left( \overline{{{m}_{1}}}+\overline{{{m}_{2}}} \right)+\overline{{{m}_{3}}}=\overline{{{m}_{1}}}+\left( \overline{{{m}_{2}}}+\overline{{{m}_{3}}} \right)=\left( {{m}_{1}}+{{m}_{2}}+{{m}_{3}} \right)+N (m1+m2)+m3=m1+(m2+m3)=(m1+m2+m3)+N
    Unit:: 0 ‾ = 0 + N = N \overline{0}=0+N=N 0=0+N=N.
    Reversibility: ∀ m ∈ M \forall m\in M mM, ∃ ( − m ) ∈ M \exists \left( -m \right)\in M (m)M
    m ‾ + ( − m ) ‾ = ( m + N ) + ( − m + N ) = ( m − m ) + N = N = 0 ‾ \overline{m}+\overline{\left( -m \right)}=\left( m+N \right)+\left( -m+N \right)=\left( m-m \right)+N=N=\overline{0} m+(m)=(m+N)+(m+N)=(mm)+N=N=0
    And since ψ ≅ φ \psi \cong \varphi ψφ, it is obvious that ( M / N , ψ ) \left( M/N,\psi \right) (M/N,ψ) is an R-module.

商模例子

  1. 商空间是商模;
  2. n Z n\mathbb{Z} nZ(所有能被 n n n整除的正整数的全体)是 Z \mathbb{Z} Z作为 Z - \mathbb{Z}\text{-} Z-模的子模(映射取平凡的乘法即可), Z / n Z \mathbb{Z}/n\mathbb{Z} Z/nZ是对应的商模。

单模(Simple Module)

单模定义
   M M M是一个 R − R- R模,若 M M M没有非平凡真子模,即 M M M的子模只有 { 0 } \left\{ 0 \right\} {0} M M M,则称 M M M是单模。

单模例子

  1. ( C , + ) \left( \mathbb{C},+ \right) (C,+) ( C , + , × ) \left( \mathbb{C},+,\times \right) (C,+,×)上的单模, ∀ n ≥ 2 \forall n\ge 2 n2 ( C n , + ) \left( {{\mathbb{C}}^{n}},+ \right) (Cn,+)不是 ( C , + , × ) \left( \mathbb{C},+,\times \right) (C,+,×)上的单模。
    证明:
    ∀ x ∈ C \ { 0 } \forall x\in \mathbb{C}\backslash \left\{ 0 \right\} xC\{0},考虑 ∀ y ∈ C \forall y\in \mathbb{C} yC ∃ c ∈ C ,   s . t .   y = c x   ⇒   C ⊆ C x \exists c\in \mathbb{C},\text{ }s.t.\text{ }y=cx\text{ }\Rightarrow \text{ }\mathbb{C}\subseteq \mathbb{C}x cC, s.t. y=cx  CCx
    另一方面,由 C C ⊆ C \mathbb{C}\mathbb{C}\subseteq \mathbb{C} CCC C x ⊆ C \mathbb{C}x\subseteq \mathbb{C} CxC。于是有 C = C x \mathbb{C}=\mathbb{C}x C=Cx,根据单模命题1, C \mathbb{C} C是单模。
    ②以 C 2 {{\mathbb{C}}^{2}} C2为例子,除了 { [ 0 0 ] } ,   C 2 \left\{ \left[ \begin{matrix} 0 \\ 0 \\ \end{matrix} \right] \right\},\text{ }{{\mathbb{C}}^{2}} {[00]}, C2 { [ C 0 ] } ,   { [ 0 C ] } \left\{ \left[ \begin{matrix} \mathbb{C} \\ 0 \\ \end{matrix} \right] \right\},\text{ }\left\{ \left[ \begin{matrix} 0 \\ \mathbb{C} \\ \end{matrix} \right] \right\} {[C0]}, {[0C]}也是 C 2 {{\mathbb{C}}^{2}} C2的子模。

单模命题

  1. M M M是单模 ⇔ M = R x ,   ∀ x ∈ M \ { 0 } \Leftrightarrow M=Rx,\text{ }\forall x\in M\backslash \left\{ 0 \right\} M=Rx, xM\{0}
    证明:
    ( ⇒ ) \left( \Rightarrow \right) () ∀ x ∈ M \ { 0 } , \forall x\in M\backslash \left\{ 0 \right\}, xM\{0},我们指出 ( R x , + ) \left( Rx,+ \right) (Rx,+) ( M , + ) \left( M,+ \right) (M,+)的一个子模。
    ①因为 R R R是含幺环,所以有 R R = R ⇒ R ( R x ) = R x RR=R\Rightarrow R\left( Rx \right)=Rx RR=RR(Rx)=Rx
    ②由 R M ⊆ M RM\subseteq M RMM R x ⊆ M Rx\subseteq M RxM,且 ( R x , + ) \left( Rx,+ \right) (Rx,+)是一个群:
    封闭性: r 1 x + r 2 x = ( r 1 + r 2 ) x ,   r 1 + r 2 ∈ R {{r}_{1}}x+{{r}_{2}}x=\left( {{r}_{1}}+{{r}_{2}} \right)x,\text{ }{{r}_{1}}+{{r}_{2}}\in R r1x+r2x=(r1+r2)x, r1+r2R
    结合律: ( r 1 x + r 2 x ) + r 3 x = r 1 x + ( r 2 x + r 3 x ) = ( r 1 + r 2 + r 3 ) x \left( {{r}_{1}}x+{{r}_{2}}x \right)+{{r}_{3}}x={{r}_{1}}x+\left( {{r}_{2}}x+{{r}_{3}}x \right)=\left( {{r}_{1}}+{{r}_{2}}+{{r}_{3}} \right)x (r1x+r2x)+r3x=r1x+(r2x+r3x)=(r1+r2+r3)x
    加法单位元: 0 x 0x 0x
    可逆性: ∀ r x \forall rx rx,逆元为 ( − r ) x ∈ R x \left( -r \right)x\in Rx (r)xRx
    而由于 M M M是单模 ⇒ \Rightarrow 子模 R x = { 0 }   o r   M Rx=\left\{ 0 \right\}\text{ }or\text{ }M Rx={0} or M。又由于 1 x = x ∉ { 0 } 1x=x\notin \left\{ 0 \right\} 1x=x/{0},所以 R x = M Rx=M Rx=M.
    ( ⇐ ) \left( \Leftarrow \right) ()设存在子模 M ′ ⊆ M M'\subseteq M MM M ′ ≠ { 0 } M'\ne \left\{ 0 \right\} M={0},任取 x ∈ M ′ \ { 0 } x\in M'\backslash \left\{ 0 \right\} xM\{0},由 R M ′ ⊆ M ′ RM'\subseteq M' RMM
    M = R x ⊆ M ′ ⊆ M ⇒ R x = M = M ′ M=Rx\subseteq M'\subseteq M\Rightarrow Rx=M=M' M=RxMMRx=M=M
    所以任意不为 { 0 } \left\{ 0 \right\} {0}的子模必定是 M M M。于是 M M M为单模。

杂注

  1. 线性空间—对域而言;模—对(含幺)环而言。
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值