《实变函数简明教程》,P78,第3题(判断函数可测性)

本文探讨了实变函数中的函数可测性问题。通过一系列引理,如零测集性质、可测集的并集与交集、连续函数的可测性,证明了如果函数列在可测集上几乎处处连续,其极限函数也在该集上可测。
摘要由CSDN通过智能技术生成

引理:P65,定理3.8

  若 { f k } \left\{ { {f}_{k}} \right\} { fk} E E E上的可测函数列, lim ⁡ k → ∞   f k ( x ) = f ( x ) \underset{k\to \infty }{\mathop{\lim }}\,{ {f}_{k}}\left( x \right)=f\left( x \right) klimfk(x)=f(x)有意义a. e. 于 E E E,则函数 f f f E E E上可测。

引理:P44

  零测集的子集仍是零测集。

引理:P48,例5

  零测集是可测集,其测度为0.

引理:P49,定理2.2(i)

  若 E 1 ∈ M { {E}_{1}}\in \mathscr{M} E1M E 2 ∈ M { {E}_{2}}\in \mathscr{M} E2M,则 E 1 ∪ E 2 { {E}_{1}}\cup { {E}_{2}} E1E2 E 1 ∩ E 2 { {E}_{1}}\cap { {E}_{2}} E1E2 E 1 \ E 2 { {E}_{1}}\backslash { {E}_{2}} E1\E2皆属于 M \mathscr{M} M,其中 M \mathscr{M} M是全体可测集组成的集合。

引理:P63

  可测集上的连续函数一定可测。

引理:P59,定义3.1

  设

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值