《实变函数简明教程》,P78,第3题(判断函数可测性)
引理:P65,定理3.8
若 { f k } \left\{ { {f}_{k}} \right\} { fk}是 E E E上的可测函数列, lim k → ∞ f k ( x ) = f ( x ) \underset{k\to \infty }{\mathop{\lim }}\,{ {f}_{k}}\left( x \right)=f\left( x \right) k→∞limfk(x)=f(x)有意义a. e. 于 E E E,则函数 f f f在 E E E上可测。
引理:P44
零测集的子集仍是零测集。
引理:P48,例5
零测集是可测集,其测度为0.
引理:P49,定理2.2(i)
若 E 1 ∈ M { {E}_{1}}\in \mathscr{M} E1∈M, E 2 ∈ M { {E}_{2}}\in \mathscr{M} E2∈M,则 E 1 ∪ E 2 { {E}_{1}}\cup { {E}_{2}} E1∪E2, E 1 ∩ E 2 { {E}_{1}}\cap { {E}_{2}} E1∩E2, E 1 \ E 2 { {E}_{1}}\backslash { {E}_{2}} E1\E2皆属于 M \mathscr{M} M,其中 M \mathscr{M} M是全体可测集组成的集合。
引理:P63
可测集上的连续函数一定可测。
引理:P59,定义3.1
设