NeRF 与 Gaussian Splatting 完整教程

NeRF 与 Gaussian Splatting 完整教程

本教程旨在全面介绍 NeRF(神经辐射场)Gaussian Splatting(高斯点云渲染) 两种先进的3D场景表示与渲染技术。内容涵盖它们的定义、输入输出、训练与推理过程,以及它们在生成、重建、新视角合成和渲染方法中的分类。

目录

  1. 什么是 NeRF?
  2. 什么是 Gaussian Splatting?
  3. NeRF 和 Gaussian Splatting 的输入输出
  4. 训练与推理过程
  5. NeRF 和 Gaussian Splatting 的分类
  6. 总结

什么是 NeRF?

NeRF(Neural Radiance Fields,神经辐射场) 是一种基于深度学习的3D场景重建与渲染技术。由加州大学伯克利分校的研究团队在2020年提出,NeRF 通过训练神经网络来表示和生成复杂的三维场景,能够从不同的视角生成高质量的图像。

主要特点

  • 高精度3D重建:能够从多张二维图像中重建出细节丰富的三维模型。
  • 新视角渲染:可生成从未见过的视角下的逼真图像,实现视角转换。
  • 体积渲染:处理复杂的光照和透明度效果,如雾、玻璃等。
  • 广泛应用:虚拟现实(VR)、增强现实(AR)、电影特效、游戏开发、数字孪生等领域。

工作原理

NeRF 使用多层感知机(MLP)神经网络,输入空间中的一个点(3D 坐标)和视角方向,输出该点的颜色(RGB)和密度(σ)。通过对大量不同视角的图像进行训练,NeRF 学会了空间中颜色和密度的分布,从而能够生成新的视角图像。


什么是 Gaussian Splatting?

Gaussian Splatting(高斯点云渲染) 是一种用于3D场景表示和渲染的方法。与传统的网格模型或基于体积的渲染方法不同,Gaussian Splatting 通过在三维空间中分布大量高斯函数(高斯“点”)来表示场景,实现高效且高质量的渲染。

主要特点

  • 高效渲染:利用并行处理高斯点,实现实时或近实时的渲染。
  • 灵活性强:高斯点可动态调整位置、大小和形状,适应不同需求。
  • 简化数据结构:相比复杂的网格或体积数据结构,点云表示更简洁,降低存储和计算开销。
  • 抗噪性能好:高斯函数的平滑特性在处理噪声和不完整数据时表现出色。

应用场景

  • 实时渲染:适用于游戏、虚拟现实(VR)和增强现实(AR)等需要快速渲染的应用。
  • 3D扫描与重建:快速生成可视化的3D模型。
  • 动画与特效:在电影和动画制作中创建复杂视觉效果。
  • 科学可视化:展示复杂科学数据,如医学成像和工程仿真。

工作原理

Gaussian Splatting 通过在三维空间中分布大量高斯函数,每个高斯函数具有位置、颜色、大小和形状等参数。在渲染过程中,这些高斯点被“撒”到二维图像平面上,并根据其参数进行叠加和混合,最终生成逼真的图像。这种方法充分利用现代GPU的并行计算能力,实现高效渲染。


NeRF 和 Gaussian Splatting 的输入输出

NeRF(神经辐射场)

输入
  • 训练阶段

    • 二维图像:来自多个不同视角的高质量照片。
    • 相机参数:每张图像的相机位置和朝向(包括内参和外参)。
    • 采样点:在三维空间中对每条光线进行采样,获取多个点的位置和视角方向。
  • 推理阶段

    • 视角参数:新的视角位置和方向,用于生成未见过的视角图像。
    • 采样点:在三维空间中对新视角的光线进行采样。
输出
  • 训练阶段

    • 颜色和密度值:对于每个采样点,NeRF 网络输出其颜色(RGB)和密度(σ)。
  • 推理阶段

    • 渲染图像:通过体积渲染算法生成从新视角观察到的二维图像。

Gaussian Splatting(高斯点云渲染)

输入
  • 训练阶段

    • 三维高斯点云:每个高斯点包含位置(x, y, z)、颜色(RGB)、尺寸(σ)等参数。
    • 视角参数:相机位置和朝向,用于确定渲染时的投影。
  • 推理阶段

    • 三维高斯点云:已优化的高斯点集合。
    • 视角参数:新的相机位置和朝向,用于生成图像。
输出
  • 训练阶段

    • 优化后的高斯参数:位置、颜色、尺寸等参数经过优化以更好地表示目标场景。
  • 推理阶段

    • 渲染图像:根据高斯点云和视角参数,生成从新视角观察到的二维图像。

训练与推理过程

NeRF(神经辐射场)

训练过程
  1. 数据准备

    • 收集多视角的二维图像,并记录相应的相机参数(位置、朝向、内参)。
  2. 网络架构

    • 使用多层感知机(MLP),输入为三维坐标(x, y, z)和视角方向(θ, φ),输出为颜色(RGB)和密度(σ)。
  3. 采样与渲染

    • 对每条光线进行采样,获取一系列采样点。
    • 将采样点及其视角方向输入 MLP,得到颜色和密度。
    • 使用体积渲染公式综合这些值,生成最终的像素颜色。
  4. 损失函数

    • 采用重建损失(如均方误差,MSE),将渲染图像与真实图像比较,计算误差。
    • 通过反向传播和优化算法(如Adam)最小化损失,更新网络参数。
  5. 迭代训练

    • 重复采样、渲染和优化过程,直至模型收敛,能够准确重建三维场景。
推理过程
  1. 输入新视角

    • 提供新的相机参数(位置和朝向),定义希望渲染的视角。
  2. 采样与预测

    • 对每条光线进行采样,获取多个采样点的位置和视角方向。
    • 将这些点输入已训练好的 MLP,预测每个点的颜色和密度。
  3. 体积渲染

    • 使用体积渲染公式将所有预测的颜色和密度进行积分,得到最终的像素颜色。
  4. 生成图像

    • 重复上述过程,生成整个图像的新视角渲染结果。

Gaussian Splatting(高斯点云渲染)

训练过程
  1. 数据准备

    • 获取多视角的二维图像及其相应的相机参数。
    • 通过3D重建或其他技术初始化三维高斯点云。
  2. 高斯点初始化

    • 生成初始的高斯点云,覆盖整个三维空间,可能包括随机分布或基于初始扫描数据。
  3. 渲染与优化

    • 定义每个高斯点的参数(位置、颜色、尺寸等)。
    • 对每个视角,使用高斯点云进行渲染,生成图像。
    • 计算渲染图像与真实图像之间的误差(如MSE)。
  4. 参数优化

    • 通过反向传播和优化算法(如Adam),调整高斯点的参数,以最小化渲染误差。
    • 可能采用层次优化策略,先优化粗略分布,再细化高斯点。
  5. 迭代训练

    • 不断调整高斯点的参数,直至高斯点云能够准确表示目标三维场景,并生成高质量的渲染图像。
推理过程
  1. 输入新视角

    • 提供新的相机参数(位置和朝向),定义希望渲染的视角。
  2. 高斯点渲染

    • 将高斯点云投影到二维图像平面上,每个高斯点根据其参数“撒”在图像上,形成模糊的斑点(splat)。
    • 结合所有高斯点的贡献,通过混合和叠加,生成最终的像素颜色。
  3. 实时优化(可选):

    • 根据需要,动态调整高斯点以适应新的视角需求,提升渲染质量。
  4. 生成图像

    • 完成所有高斯点的渲染和混合,得到最终从新视角观察到的二维图像。

NeRF 和 Gaussian Splatting 的分类

NeRF(神经辐射场)

  • 重建方法

    • 主要用于三维场景的重建,通过学习二维图像之间的几何和材质关系,生成连续的辐射场表示。
  • 渲染方法

    • 具备新视角渲染能力,通过体积渲染公式生成从不同视角观察到的图像。
  • 生成方法(弱相关):

    • 虽然NeRF能生成图像,但其生成过程基于训练数据的场景表示,不属于传统意义上的生成方法(如GAN)。

Gaussian Splatting(高斯点云渲染)

  • 渲染方法

    • 主要是一种基于点云的高效渲染方法,通过高斯函数的投影和混合生成图像。
  • 重建方法(弱相关):

    • 在某些应用中,通过优化高斯点云表示场景,可以视为一种重建过程,但不如NeRF 那样直接用于重建。
  • 生成方法(很弱相关):

    • 本质上不用于生成新场景,更多用于对现有场景的表示和渲染。

分类总结

方法重建渲染生成
NeRF训练阶段属于重建方法是,通过体积渲染生成新视角图像推理阶段属于生成方法
Gaussian Splatting训练阶段可以部分视为重建是,高效的实时点云渲染方法不属于生成方法

解释:
NeRF 在推理阶段更倾向于生成,因为它通过神经网络预测新数据(颜色和密度),然后生成新视角的图像。
Gaussian Splatting 在推理阶段更倾向于渲染,因为它只是基于点云进行几何投影和混合,而不涉及从神经网络生成新数据。


总结

NeRF(神经辐射场)

  • 定义:基于神经网络的3D场景重建与渲染技术。
  • 输入输出
    • 输入:多视角二维图像及相机参数。
    • 输出:训练阶段预测颜色和密度,推理阶段生成新视角图像。
  • 训练与推理
    • 训练:通过多视角图像训练MLP,优化网络参数以准确预测颜色和密度。
    • 推理:输入新视角参数,采样点通过MLP预测颜色和密度,使用体积渲染生成图像。
  • 分类:主要属于重建渲染方法,具备弱生成能力。

Gaussian Splatting(高斯点云渲染)

  • 定义:基于高斯函数的高效3D场景表示与渲染方法。
  • 输入输出
    • 输入:三维高斯点云及相机参数。
    • 输出:训练阶段优化高斯点参数,推理阶段生成新视角图像。
  • 训练与推理
    • 训练:初始化高斯点云,通过渲染与真实图像比较,优化高斯点参数。
    • 推理:输入新视角参数,将高斯点云投影并混合生成图像。
  • 分类:主要属于渲染方法,具备弱重建能力,几乎不具备生成能力。

新视角合成是一个跨越“重建”、“生成”和“渲染”的任务:

  • NeRF 的新视角合成属于生成方法,因为它依赖神经网络生成新数据。
  • Gaussian Splatting 的新视角合成属于渲染方法,因为它基于已有几何表示直接投影和混合,依赖显式表示。

两者的核心差异在于推理阶段的本质:

  • NeRF 是通过隐式场景表示和神经网络生成。
  • Gaussian Splatting 是通过显式点云表示渲染。

选择建议

  • NeRF

    • 适用于需要高质量图像和细节的应用,如高精度3D重建和复杂光照效果。
    • 渲染速度要求不高的场景。
  • Gaussian Splatting

    • 适用于需要实时或近实时渲染的应用,如游戏和VR/AR。
    • 希望高效管理三维数据的场景。

两者在3D场景表示和渲染方面各有优势,具体选择应根据项目需求和性能要求来决定。


希望本教程能够帮助您全面了解 NeRF 和 Gaussian Splatting 的基本概念、工作原理及其在不同应用中的定位。如有更多问题,欢迎继续探讨!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沃洛德.辛肯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值