NeRF 与 Gaussian Splatting 完整教程
本教程旨在全面介绍 NeRF(神经辐射场) 和 Gaussian Splatting(高斯点云渲染) 两种先进的3D场景表示与渲染技术。内容涵盖它们的定义、输入输出、训练与推理过程,以及它们在生成、重建、新视角合成和渲染方法中的分类。
目录
- 什么是 NeRF?
- 什么是 Gaussian Splatting?
- NeRF 和 Gaussian Splatting 的输入输出
- 训练与推理过程
- NeRF 和 Gaussian Splatting 的分类
- 总结
什么是 NeRF?
NeRF(Neural Radiance Fields,神经辐射场) 是一种基于深度学习的3D场景重建与渲染技术。由加州大学伯克利分校的研究团队在2020年提出,NeRF 通过训练神经网络来表示和生成复杂的三维场景,能够从不同的视角生成高质量的图像。
主要特点
- 高精度3D重建:能够从多张二维图像中重建出细节丰富的三维模型。
- 新视角渲染:可生成从未见过的视角下的逼真图像,实现视角转换。
- 体积渲染:处理复杂的光照和透明度效果,如雾、玻璃等。
- 广泛应用:虚拟现实(VR)、增强现实(AR)、电影特效、游戏开发、数字孪生等领域。
工作原理
NeRF 使用多层感知机(MLP)神经网络,输入空间中的一个点(3D 坐标)和视角方向,输出该点的颜色(RGB)和密度(σ)。通过对大量不同视角的图像进行训练,NeRF 学会了空间中颜色和密度的分布,从而能够生成新的视角图像。
什么是 Gaussian Splatting?
Gaussian Splatting(高斯点云渲染) 是一种用于3D场景表示和渲染的方法。与传统的网格模型或基于体积的渲染方法不同,Gaussian Splatting 通过在三维空间中分布大量高斯函数(高斯“点”)来表示场景,实现高效且高质量的渲染。
主要特点
- 高效渲染:利用并行处理高斯点,实现实时或近实时的渲染。
- 灵活性强:高斯点可动态调整位置、大小和形状,适应不同需求。
- 简化数据结构:相比复杂的网格或体积数据结构,点云表示更简洁,降低存储和计算开销。
- 抗噪性能好:高斯函数的平滑特性在处理噪声和不完整数据时表现出色。
应用场景
- 实时渲染:适用于游戏、虚拟现实(VR)和增强现实(AR)等需要快速渲染的应用。
- 3D扫描与重建:快速生成可视化的3D模型。
- 动画与特效:在电影和动画制作中创建复杂视觉效果。
- 科学可视化:展示复杂科学数据,如医学成像和工程仿真。
工作原理
Gaussian Splatting 通过在三维空间中分布大量高斯函数,每个高斯函数具有位置、颜色、大小和形状等参数。在渲染过程中,这些高斯点被“撒”到二维图像平面上,并根据其参数进行叠加和混合,最终生成逼真的图像。这种方法充分利用现代GPU的并行计算能力,实现高效渲染。
NeRF 和 Gaussian Splatting 的输入输出
NeRF(神经辐射场)
输入
-
训练阶段:
- 二维图像:来自多个不同视角的高质量照片。
- 相机参数:每张图像的相机位置和朝向(包括内参和外参)。
- 采样点:在三维空间中对每条光线进行采样,获取多个点的位置和视角方向。
-
推理阶段:
- 视角参数:新的视角位置和方向,用于生成未见过的视角图像。
- 采样点:在三维空间中对新视角的光线进行采样。
输出
-
训练阶段:
- 颜色和密度值:对于每个采样点,NeRF 网络输出其颜色(RGB)和密度(σ)。
-
推理阶段:
- 渲染图像:通过体积渲染算法生成从新视角观察到的二维图像。
Gaussian Splatting(高斯点云渲染)
输入
-
训练阶段:
- 三维高斯点云:每个高斯点包含位置(x, y, z)、颜色(RGB)、尺寸(σ)等参数。
- 视角参数:相机位置和朝向,用于确定渲染时的投影。
-
推理阶段:
- 三维高斯点云:已优化的高斯点集合。
- 视角参数:新的相机位置和朝向,用于生成图像。
输出
-
训练阶段:
- 优化后的高斯参数:位置、颜色、尺寸等参数经过优化以更好地表示目标场景。
-
推理阶段:
- 渲染图像:根据高斯点云和视角参数,生成从新视角观察到的二维图像。
训练与推理过程
NeRF(神经辐射场)
训练过程
-
数据准备:
- 收集多视角的二维图像,并记录相应的相机参数(位置、朝向、内参)。
-
网络架构:
- 使用多层感知机(MLP),输入为三维坐标(x, y, z)和视角方向(θ, φ),输出为颜色(RGB)和密度(σ)。
-
采样与渲染:
- 对每条光线进行采样,获取一系列采样点。
- 将采样点及其视角方向输入 MLP,得到颜色和密度。
- 使用体积渲染公式综合这些值,生成最终的像素颜色。
-
损失函数:
- 采用重建损失(如均方误差,MSE),将渲染图像与真实图像比较,计算误差。
- 通过反向传播和优化算法(如Adam)最小化损失,更新网络参数。
-
迭代训练:
- 重复采样、渲染和优化过程,直至模型收敛,能够准确重建三维场景。
推理过程
-
输入新视角:
- 提供新的相机参数(位置和朝向),定义希望渲染的视角。
-
采样与预测:
- 对每条光线进行采样,获取多个采样点的位置和视角方向。
- 将这些点输入已训练好的 MLP,预测每个点的颜色和密度。
-
体积渲染:
- 使用体积渲染公式将所有预测的颜色和密度进行积分,得到最终的像素颜色。
-
生成图像:
- 重复上述过程,生成整个图像的新视角渲染结果。
Gaussian Splatting(高斯点云渲染)
训练过程
-
数据准备:
- 获取多视角的二维图像及其相应的相机参数。
- 通过3D重建或其他技术初始化三维高斯点云。
-
高斯点初始化:
- 生成初始的高斯点云,覆盖整个三维空间,可能包括随机分布或基于初始扫描数据。
-
渲染与优化:
- 定义每个高斯点的参数(位置、颜色、尺寸等)。
- 对每个视角,使用高斯点云进行渲染,生成图像。
- 计算渲染图像与真实图像之间的误差(如MSE)。
-
参数优化:
- 通过反向传播和优化算法(如Adam),调整高斯点的参数,以最小化渲染误差。
- 可能采用层次优化策略,先优化粗略分布,再细化高斯点。
-
迭代训练:
- 不断调整高斯点的参数,直至高斯点云能够准确表示目标三维场景,并生成高质量的渲染图像。
推理过程
-
输入新视角:
- 提供新的相机参数(位置和朝向),定义希望渲染的视角。
-
高斯点渲染:
- 将高斯点云投影到二维图像平面上,每个高斯点根据其参数“撒”在图像上,形成模糊的斑点(splat)。
- 结合所有高斯点的贡献,通过混合和叠加,生成最终的像素颜色。
-
实时优化(可选):
- 根据需要,动态调整高斯点以适应新的视角需求,提升渲染质量。
-
生成图像:
- 完成所有高斯点的渲染和混合,得到最终从新视角观察到的二维图像。
NeRF 和 Gaussian Splatting 的分类
NeRF(神经辐射场)
-
重建方法:
- 主要用于三维场景的重建,通过学习二维图像之间的几何和材质关系,生成连续的辐射场表示。
-
渲染方法:
- 具备新视角渲染能力,通过体积渲染公式生成从不同视角观察到的图像。
-
生成方法(弱相关):
- 虽然NeRF能生成图像,但其生成过程基于训练数据的场景表示,不属于传统意义上的生成方法(如GAN)。
Gaussian Splatting(高斯点云渲染)
-
渲染方法:
- 主要是一种基于点云的高效渲染方法,通过高斯函数的投影和混合生成图像。
-
重建方法(弱相关):
- 在某些应用中,通过优化高斯点云表示场景,可以视为一种重建过程,但不如NeRF 那样直接用于重建。
-
生成方法(很弱相关):
- 本质上不用于生成新场景,更多用于对现有场景的表示和渲染。
分类总结
方法 | 重建 | 渲染 | 生成 |
---|---|---|---|
NeRF | 训练阶段属于重建方法 | 是,通过体积渲染生成新视角图像 | 推理阶段属于生成方法 |
Gaussian Splatting | 训练阶段可以部分视为重建 | 是,高效的实时点云渲染方法 | 不属于生成方法 |
解释:
NeRF 在推理阶段更倾向于生成,因为它通过神经网络预测新数据(颜色和密度),然后生成新视角的图像。
Gaussian Splatting 在推理阶段更倾向于渲染,因为它只是基于点云进行几何投影和混合,而不涉及从神经网络生成新数据。
总结
NeRF(神经辐射场)
- 定义:基于神经网络的3D场景重建与渲染技术。
- 输入输出:
- 输入:多视角二维图像及相机参数。
- 输出:训练阶段预测颜色和密度,推理阶段生成新视角图像。
- 训练与推理:
- 训练:通过多视角图像训练MLP,优化网络参数以准确预测颜色和密度。
- 推理:输入新视角参数,采样点通过MLP预测颜色和密度,使用体积渲染生成图像。
- 分类:主要属于重建和渲染方法,具备弱生成能力。
Gaussian Splatting(高斯点云渲染)
- 定义:基于高斯函数的高效3D场景表示与渲染方法。
- 输入输出:
- 输入:三维高斯点云及相机参数。
- 输出:训练阶段优化高斯点参数,推理阶段生成新视角图像。
- 训练与推理:
- 训练:初始化高斯点云,通过渲染与真实图像比较,优化高斯点参数。
- 推理:输入新视角参数,将高斯点云投影并混合生成图像。
- 分类:主要属于渲染方法,具备弱重建能力,几乎不具备生成能力。
新视角合成是一个跨越“重建”、“生成”和“渲染”的任务:
- NeRF 的新视角合成属于生成方法,因为它依赖神经网络生成新数据。
- Gaussian Splatting 的新视角合成属于渲染方法,因为它基于已有几何表示直接投影和混合,依赖显式表示。
两者的核心差异在于推理阶段的本质:
- NeRF 是通过隐式场景表示和神经网络生成。
- Gaussian Splatting 是通过显式点云表示渲染。
选择建议
-
NeRF:
- 适用于需要高质量图像和细节的应用,如高精度3D重建和复杂光照效果。
- 对渲染速度要求不高的场景。
-
Gaussian Splatting:
- 适用于需要实时或近实时渲染的应用,如游戏和VR/AR。
- 希望高效管理三维数据的场景。
两者在3D场景表示和渲染方面各有优势,具体选择应根据项目需求和性能要求来决定。
希望本教程能够帮助您全面了解 NeRF 和 Gaussian Splatting 的基本概念、工作原理及其在不同应用中的定位。如有更多问题,欢迎继续探讨!