FixMatch半监督学习方法

FixMatch半监督学习方法

FixMatch 是一种半监督学习方法,通过结合伪标签生成和一致性正则化,充分利用未标记数据,减少对标记数据的依赖,同时提升模型性能。以下是对 FixMatch 的全面介绍。


1. FixMatch 介绍

FixMatch 的核心思想:

  • 伪标签生成:使用模型对未标记数据进行预测,生成伪标签,仅在预测置信度高时采用。
  • 一致性正则化:通过强增强和弱增强保持模型对同一数据样本的预测一致性。

FixMatch 的优势:

  1. 高效利用未标记数据,显著降低标注成本。
  2. 简单易实现,不需要复杂的模型改动。
  3. 在标记样本有限的情况下,具有良好的性能表现。

2. FixMatch 的训练步骤

FixMatch 的训练过程可以分为以下阶段:

(1) 初始阶段:有标签样本的训练

  • 使用有标签样本进行监督训练,优化标准的交叉熵损失:
    L supervised = − 1 N l ∑ i = 1 N l log ⁡ p ( y i ∣ x i ) \mathcal{L}_{\text{supervised}} = - \frac{1}{N_l} \sum_{i=1}^{N_l} \log p(y_i | x_i) Lsupervised=Nl1i=1Nllogp(yixi)

(2) 利用未标记样本:伪标签和一致性正则化

(a) 强增强预测伪标签
  1. 对未标记样本 x u x_u xu
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值