FixMatch半监督学习方法
FixMatch 是一种半监督学习方法,通过结合伪标签生成和一致性正则化,充分利用未标记数据,减少对标记数据的依赖,同时提升模型性能。以下是对 FixMatch 的全面介绍。
1. FixMatch 介绍
FixMatch 的核心思想:
- 伪标签生成:使用模型对未标记数据进行预测,生成伪标签,仅在预测置信度高时采用。
- 一致性正则化:通过强增强和弱增强保持模型对同一数据样本的预测一致性。
FixMatch 的优势:
- 高效利用未标记数据,显著降低标注成本。
- 简单易实现,不需要复杂的模型改动。
- 在标记样本有限的情况下,具有良好的性能表现。
2. FixMatch 的训练步骤
FixMatch 的训练过程可以分为以下阶段:
(1) 初始阶段:有标签样本的训练
- 使用有标签样本进行监督训练,优化标准的交叉熵损失:
L supervised = − 1 N l ∑ i = 1 N l log p ( y i ∣ x i ) \mathcal{L}_{\text{supervised}} = - \frac{1}{N_l} \sum_{i=1}^{N_l} \log p(y_i | x_i) Lsupervised=−Nl1i=1∑Nllogp(yi∣xi)
(2) 利用未标记样本:伪标签和一致性正则化
(a) 强增强预测伪标签
- 对未标记样本 x u x_u xu