双臂具身智能方向:一文汇总Franka机器人在科研、医疗等双臂机器人研究案例和双臂方案参考

目录

一、双臂机器人的意义

1. 类人操作

2. 协同操作

3. 环境感知

二、Franka机器人双臂协同操作10个研究案例

1. 双臂力感知遥操作中的协作与精细操作 (Arxiv: 2108.04567v6)

2. 双臂人形机器人操作 (Feichen Lab)

3. 动态双臂操控 (IAS Research - TU Darmstadt)

4. 生活场景双臂复杂操作机器人 (FreshPlaza)

5. 智能装配与机器人协作 (PRINLAB)

6. 模块化装配狭小空间多Franka机器人解决方案(Modular manufacturing)

7. 工业自动化中的双臂协作(AI on Mobile Robots)

8. RS控制方法双臂冲击操作任务(RS Contol)

9. GARMIN双臂遥操作机器人(Tel Operation)

10. TUM:分层控制基于强化学习双臂操作(Sim2Real)

三、PNP机器人双臂遥操作平台配置表

1. 平台概述

2. 配置详情

3. 平台特点

4. 适用领域

Franka双臂机器人在类人操作科研中具有显著优势,其7个自由度的设计模仿了人类手臂的运动能力,提供了更高的灵活性和精确度;Franka机器人配备了先进的力感知技术,能够实现对接触力的敏感反馈,这对于执行精细操作和避免损伤物体至关重要。此外,双臂设计支持复杂的协同任务,如装配和搬运,模拟了人类的双手操作模式,提高了任务执行的效率和自然性。这些特点使得Franka机器人成为研究先进操作技能、人机交互和自动化装配等领域的理想平台。本文汇总Franka双臂机器人在科研、医疗、工业、农业等方面的全球前沿案例。

一、双臂机器人的意义

双臂Franka机器人的协同操作在研究和技术发展方面具有重要意义,尤其在类人操作、协同控制和环境感知等关键领域。

  1. 类人操作

双臂Franka机器人通过模拟人类双手的分工与协作,能够完成复杂的任务,如抓取、搬运和装配。这种类人操作不仅提高了任务的灵活性和适应性,还为研究人机交互和机器人自主学习提供了新的思路。例如,通过模仿人类双手的协同动作,机器人可以在复杂环境中自主调整操作策略,实现更高效的任务完成。

  1. 协同操作

双臂Franka机器人通过精确的运动规划和控制算法,能够实现高效的协同任务。例如,在双臂协同装配任务中,一个机械臂可以固定部件,另一个机械臂进行精确装配。这种协同操作不仅提高了任务的精度,还减少了单臂操作的时间和资源消耗。此外,协同操作还涉及到多臂之间的力和位置控制,通过引入先进的控制算法(如阻抗控制和力反馈控制),机器人可以在复杂任务中实现更高的稳定性和适应性。

  1. 环境感知

双臂Franka机器人的协同操作高度依赖于环境感知能力。通过配备多种传感器(如视觉传感器、力传感器和触觉传感器),机器人可以实时感知周围环境并做出相应调整。例如,视觉传感器可以用于目标识别和定位,力传感器可以感知接触力并调整操作力度,触觉传感器则可以提供接触反馈,增强操作的精准性和安全性。这种多模态感知能力不仅提升了机器人在复杂环境中的适应性,还为实现自主决策和任务优化提供了技术支持。

二、Franka机器人双臂协同操作10个研究案例

  1. 双臂力感知遥操作中的协作与精细操作 (Arxiv: 2108.04567v6)

在该研究中,双臂Franka机器人被用于执行复杂的协作操作,特别是在高精度制造任务中。研究提出了一种基于任务空间控制的方法,旨在优化双臂的协作效率。通过该方法,机器人能够在抓取和搬运过程中精确地分配任务,减少手臂之间的冲突,并提高整体任务的执行速度和精度。核心技术包括动态力矩分配和协调算法,使机器人能够同时处理多个操作任务,并确保在多个步骤之间顺畅切换。

该方法结合了视觉传感器和力传感器的数据,能够实时调整双臂的动作。例如,在搬运一个易碎物体时,机器人可以根据视觉反馈来判断物体的姿态,并根据触觉传感器的输入调整操作力度。这样,双臂机器人就能高效地执行精密操作,如装配、搬运等复杂任务,并避免意外碰撞。

实验结果表明,该技术能够显著提高双臂机器人在工业自动化中的应用效率,特别是在生产线的高精度装配和物品搬运任务中,机器人通过双臂协作能够减少操作时间,提升生产力。该方法具有广泛的应用前景,尤其适用于对精度要求高的工业生产和制造环境。


  1. 双臂人形机器人操作 (Feichen Lab)

Feichen实验室的研究致力于双臂Franka机器人在复杂环境中的自主操控,尤其是在装配和多任务操作中的应用。研究团队开发了一种基于深度学习的视觉系统,通过实时处理传感器数据,帮助机器人做出精确的操作决策。这种系统能够使机器人在复杂任务中自主判断和调整操作策略,例如根据零部件的位置、姿态和形状调整抓取方式。

为了解决多任务操作中的协调问题,团队提出了一种自适应控制算法,使得机器人能够根据任务的不同需求动态地分配双臂的工作量。例如,在装配过程中,机器人可以根据零件的特性自动调整双臂的抓取方式和力量,从而确保操作的精确性。这项技术不仅增强了机器人在复杂环境中的适应能力,还提高了其多任务处理的效率。

Feichen实验室的研究展示了双臂Franka机器人在工业、医疗和服务等领域的应用潜力。特别是在需要高精度操作和灵活性的场景中,机器人能够自主完成高难度任务,表现出与人类相似的灵活性和协调性。这为未来机器人在智能制造和精密操作中的广泛应用提供了重要的技术支持。


  1. 动态双臂操控 (IAS Research - TU Darmstadt)

TU Darmstadt的研究团队专注于双臂Franka机器人在动态环境中的应用,尤其是在高精度操作任务中的表现。团队提出了一种基于动力学优化的控制方法,目的是增强双臂机器人在复杂和动态环境中的适应性。该控制算法通过实时反馈来调整机器人的运动参数,使其能够有效应对环境中的不确定性,如零件的微小移动或外部干扰。

例如,在装配任务中,机器人不仅需要精确地抓取零件,还要应对可能发生的干扰和误差。为了应对这些挑战,机器人结合了视觉和力控系统,通过不断调整双臂的动作来补偿误差,确保任务能够顺利完成。这种优化控制方法可以实时调整机器人的操作姿势和力量分配,使其能够在动态环境下执行高难度的协作任务。

此外,研究还探讨了机器人在多任务环境下的表现,特别是在多臂协作时,如何通过任务分配和负载平衡来提高效率。该方法适用于各类需要双臂协作的高精度任务,如机器人装配、焊接和复杂制造任务,极大提升了工业自动化的灵活性和效率。


  1. 生活场景双臂复杂操作机器人 (FreshPlaza)

双臂Franka机器人在农业领域的应用,特别是在蔬菜和水果的处理过程中,展现了其在精细操作中的巨大潜力。机器人通过结合视觉和触觉传感器,能够进行高精度的抓取和剥皮操作。例如,在处理蔬菜时,机器人能够根据物体的形状和质地调整操作力度,避免损伤食物。这一技术使得机器人能够像人类一样灵活操作,处理不同的食品,确保每一项任务的高效执行。

机器人还能够执行自动化采摘、清洗等任务,提升农业生产效率。在自动采摘过程中,机器人利用视觉识别技术,精确判断水果的成熟度和位置,并通过双臂的协调配合将其采摘下来。此外,机器人通过触觉传感器实时感知物体的硬度和脆弱度,能够在剥皮和清洗过程中精确调整力度,避免食品损坏。

这项技术大大减少了人工劳动成本,提升了农业生产的效率,尤其在大规模农业生产中,能够全天候不间断工作,显著提高生产能力,确保食品的质量和一致性。


  1. 智能装配与机器人协作 (PRINLAB)

PRINLAB的研究集中于双臂Franka机器人在智能装配中的应用。该团队开发了一种先进的协作算法,使机器人能够在复杂的装配任务中高效协作,尤其是在需要高精度的零部件组装时。通过视觉识别和力控技术,机器人能够实时检测零件的位置和形态,并自动调整操作方式,从而确保装配任务的精度和效率。

关键技术包括任务分配算法和动态协作控制,使得双臂机器人能够根据任务的需求灵活调整操作策略。例如,在一个复杂的电子产品装配任务中,机器人能够精确地将每个零部件放置到正确的位置,同时避免装配过程中发生冲突。这种智能协作大大提升了生产效率,减少了人为错误。

通过集成传感器数据和AI控制算法,PRINLAB的系统不仅提高了机器人在工业自动化中的应用效果,还使其能够在复杂的生产线中与其他机器或操作员进行协同工作,进一步提升生产能力和灵活性。


  1. 模块化装配狭小空间多Franka机器人解决方案(Modular manufacturing)

Hydrabyte公司推出的Robosphere系统是一种针对Franka机械臂组近场运动规划的优化解决方案。该系统的核心在于其独特的多机器人技术,能够在极小的空间内并行执行多个装配流程,显著提高生产效率和空间利用率。通过精确的运动规划和协同控制,Robosphere能够确保机器人在复杂环境下的高效操作,同时减少碰撞风险。

Hydrabyte与Olive Robotics GmbH合作,将在展会上展示基于Olive Robotics模块化组件的Franka机器人系统装配过程。这种合作不仅体现了Robosphere系统的灵活性和兼容性,还展示了其在实际工业场景中的应用潜力。通过模块化设计,用户可以根据需求快速配置和调整Franka机器人系统,进一步提升生产的灵活性和适应性。

总的来说,Robosphere系统为多Franka机器人协同作业提供了一种高效、灵活且可靠的解决方案,特别适用于空间受限但需要高效率生产的工业场景。


  1. 工业自动化中的双臂协作AI on Mobile Robots

双臂Franka机器人展示了其在工业自动化中的巨大潜力,尤其是在高效生产线和自动化装配任务中的应用。通过结合AI算法和机器人协作技术,Franka能够在复杂的工业环境中完成自动化装配、焊接和检验等任务。

该系统通过任务调度和动态协作控制,使双臂机器人能够高效地完成多个步骤的操作。例如,在汽车制造过程中,机器人能够自动进行零部件的安装和调试,通过视觉识别技术精确定位零件,并利用双臂协作进行装配。整个过程高度自动化,大幅提高了生产线的效率和稳定性。

通过集成AI和机器人控制技术,双臂Franka机器人不仅提高了工业生产的效率,还能够在多变的生产环境中适应不同任务,进一步推动了智能制造的发展。

  1. RS控制方法双臂冲击操作任务(RS Contol)

研究提出了一种基于二次规划(QP)的参考扩散(RS)控制框架,用于双臂机器人在计划同时冲击下的操作任务。该方法通过定义冲击前和冲击后的参考轨迹,并使两者在冲击时刻重叠,避免了冲击引起的跟踪误差峰值和控制输入突变。此外,引入了中间模式(interim mode),在冲击发生后的一段时间内使用,以应对环境不确定性导致的冲击非同时性问题。

实验中,双臂机器人被要求抓取不同重量的物体,并在物体位置存在不确定性的情况下完成任务。结果表明,提出的RS控制方法在减少冲击引起的输入峰值和力的突变方面表现优异,抓取成功率显著高于其他基线方法,尤其是在存在环境不确定性时,其鲁棒性得到了验证。

该研究为双臂机器人在复杂操作任务中的冲击利用提供了新的解决方案,未来可进一步优化冲击检测机制,并扩展到更复杂的机器人系统。

  1. GARMIN双臂遥操作机器人(Tel Operation)

GARMIN双臂遥操作机器人是一款专为复杂环境设计的高级机器人系统,通过远程操控实现高精度任务执行。它配备两个多自由度机械臂,能够模拟人类双手的协同动作,完成抓取、搬运、装配等任务。其机械臂设计灵活,具备高负载能力和精准控制特性,可适应多种复杂操作需求。

系统的核心是先进的遥操作技术,操作员通过控制台使用虚拟现实(VR)或增强现实(AR)设备,结合力反馈手柄,实时感知机器人状态并进行精确操控。这种沉浸式交互方式让操作员仿佛置身于机器人所处环境,同时力反馈技术使操作员能感受到机器人末端的受力情况,从而实现精准且安全的操作。

GARMIN还配备了多种传感器,如高清摄像头、激光雷达和力传感器,能够实时感知环境信息并反馈给操作员。这些传感器不仅提高了操作的可视性和安全性,还增强了机器人在复杂环境中的适应能力。此外,GARMIN的模块化设计使其能够快速调整配置,以满足不同任务需求。

GARMIN的应用场景广泛,包括核设施维护、太空探索、深海作业、灾难救援等。它能够在危险环境中替代人类执行任务,显著提高工作效率并保障人员安全。随着技术的不断进步,GARMIN有望在更多领域发挥重要作用,成为未来复杂环境作业的重要工具。

  1. TUM:分层控制基于强化学习双臂操作(Sim2Real)

慕尼黑工业大学提出了一种基于深度强化学习(Deep Reinforcement Learning, RL)的双臂机器人集中化控制方法,旨在减少传统集中控制对复杂动力学建模的依赖,同时实现双臂机器人的高效协同操作。研究的核心是通过模型无关的强化学习,使机器人能够自主学习完成任务,而无需对任务特定的动力学进行详细建模。研究者采用了一种分层的控制架构,将高级策略网络与低级控制器相结合。高级策略网络负责生成高层次的轨迹,而低级控制器则负责跟踪这些轨迹。这种模块化的设计不仅提高了学习效率,还使得策略能够在模拟环境中训练,并直接应用到现实世界中,无需额外的调整。

实验中,研究者使用了PyBullet模拟环境进行训练,并在现实世界中使用两台Franka 机器人进行测试,验证了方法的有效性。 实验任务是双臂协同完成“peg-in-hole”(销钉插入孔)操作,该任务需要精确的定位和力的控制。研究者还引入了不同的动作空间(如关节位置控制、笛卡尔阻抗控制等)来评估其对任务成功的影响。实验结果表明,该方法在模拟环境中能够成功学习到双臂协同操作的策略,并在现实世界中实现了零样本转移。关节位置控制在模拟环境中表现最佳,但在现实世界中,笛卡尔阻抗控制由于其对力的控制能力,表现出了更高的鲁棒性。此外,研究者还验证了该方法在面对外部干扰和位置不确定性时的鲁棒性,证明了其在复杂环境中的适应能力。该方法不仅在模拟环境中表现出色,还成功地转移到了现实世界中,展示了其在实际应用中的潜力。未来的研究将进一步优化动作空间和探索方法,以提高系统的样本效率和适应性。

三、PNP机器人双臂遥操作平台配置表

  1. 平台概述

PNP机器人双臂遥操作平台是一款高性能的机器人系统,专为双臂协同操作、复杂装配和远程操作等研究方向设计。该平台支持自适应任意角度安装,配备PNP75B六维力传感器和灵巧手,结合触觉反馈主手,能够提供高精度的力反馈和沉浸式的操作体验,满足多种复杂任务的需求。

PNP机器人双臂遥操作平台是一款面向复杂操作任务的高级机器人系统,支持双臂协同操作。该平台具备以下注意特点

自适应安装:支持任意角度安装,适应多种工作场景。

高精度力感知:配备PNP75B六维力传感器,能够实时感知操作过程中的力反馈。

触觉反馈主手:结合触觉反馈技术,操作员可通过主手设备实时感知机器人末端的力反馈,提升操作的精准性和沉浸感。

研究方向:适用于双臂协同、复杂装配、远程操作等研究方向。

  1. 配置详情

配置项

详细信息

备注

机械臂型号

双臂机器人

每个Franka机械臂具备7个自由度,末端配备PNP75B力传感器和灵巧手。

力传感器型号

PNP75B六维力传感器

测量范围:±100 N(力)/ ±10 N·m(扭矩),精度:0.1 N/0.01 N·m。

灵巧手配置

高精度多指灵巧手

支持复杂抓取和操作任务,具备多自由度和高精度控制。

主手设备

触觉反馈主手

提供实时力反馈,支持沉浸式操作,适用于复杂任务。

遥操作界面

虚拟现实(VR)或增强现实(AR)设备

提供沉浸式视觉反馈,支持高精度操作。

控制算法

基于力反馈的阻抗控制

实现实时力反馈与位置控制的结合,支持复杂任务的高精度操作。

通信接口

以太网(1000BASE-T)

支持低延迟、高带宽通信,确保实时数据传输。

软件支持

ROS(Robot Operating System)框架

提供丰富的功能包和工具,支持快速开发和调试。

安装方式

自适应任意角度安装

支持多种安装角度,适应复杂工作环境。

应用场景

双臂协同操作、复杂装配、远程操作、危险环境操作

适用于多种复杂任务,提升操作效率和安全性。

最大负载能力

Franka机器人单臂最大负载:3kg

适用于轻量化操作任务。

最大负载能力

Diana7单臂最大负载:7kg

适用于工业装配操作任务。

工作空间

单臂工作半径:855-916 mm

适合中等规模的操作任务。

电源要求

220V/50Hz 或 110V/60Hz

支持多种电源输入,适应不同地区需求。

安全特性

紧急停止按钮、碰撞检测与保护机制

确保操作过程中的人员和设备安全。

推理服务器

支持实时推理、数据记录与分析

便于实验数据收集与推理和后续研究。

  1. 平台特点

高精度力反馈:PNP75B六维力传感器提供高精度的力和扭矩测量,确保操作的精准性。

灵巧手配置:配备高精度多指灵巧手,支持复杂抓取和操作任务,具备多自由度和高精度控制。

触觉反馈主手:增强操作员的沉浸感,提升操作效率和安全性。

自适应安装:支持任意角度安装,适应多种复杂工作环境。

ROS支持:基于ROS框架,提供丰富的开发工具和功能包,便于快速开发和调试。

低延迟通信:支持以太网通信,确保实时数据传输,满足高精度操作需求。

  1. 适用领域

PNP机器人双臂遥操作平台适用于以下研究方向:

双臂协同操作:完成复杂的装配和操作任务。

远程操作:适用于危险环境或远程操作场景。

人机交互研究:探索触觉反馈和沉浸式操作技术。

复杂装配任务:提升操作精度和效率,减少人为错误。

PNP机器人双臂遥操作平台凭借其高精度力反馈、灵巧手配置和触觉反馈主手,为复杂操作任务提供了强大的技术支持,是双臂协同操作和远程操作研究的理想选择。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值