【YOLO】YOLO环境搭建(不定时更新)

本文详细介绍YOLOv5环境搭建过程,包括不同系统架构下的安装步骤与依赖库配置,并提供预训练模型下载及推理测试代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

笔者YOLO专栏链接🔗导航:

  1. 【YOLO】YOLO环境搭建(不定时更新)
  2. 【YOLO】训练自己的数据集

笔者更新日期 : 2025.5.5
YOLOv11是Ultralytics公司在之前的YOLO版本上推出的最新一代实时目标检测器,支持目标检测、追踪、实力分割、图像分类和姿态估计等任务。(现在YOLO系列更新的速度越来越快,同样上手也更加容易了)
官方🔗:
YOLO11指导官方文档:https://docs.ultralytics.com/models/yolo11/
YOL011代码地址:https://github.com/ultralytics/ultralytics

笔者更新日期 : 2022.3.2--------------------------------------------------------(以下是过去的笔记,忽略!)
笔者一直都非常偏爱yolov5系列,因其非常友好,上手容易,兼容性也比较高(不会有很多苛刻的要求,尤其是对训练的硬件配置),从搭建环境到训练再到应用,都非常简便。让使用者更多的时间花在实际的应用场景的协调上和改进上。
yolov5的最新版本6.1
源码:https://github.com/ultralytics/yolov5/tree/v6.0
在这里插入图片描述
一些更新信息说明:https://github.com/ultralytics/yolov5/releases/tag/v6.0

1. YOLOv11

1.1 环境安装

环境搭建非常简单,只需要几行指令即可
参考链接🔗:YOLOv11入门到入土使用教程(含结构图)

conda create -n yolov11 python=3.9 -y
conda activate yolov11
pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple/

以上即完成环境搭建!!
环境测试如下:

from ultralytics import settings
from ultralytics import YOLO
 
# View all settings
print(settings)
 
# Return a specific setting
value = settings["runs_dir"]
print(value)

终端输出:

JSONDict(“/home/jd/.config/Ultralytics/settings.json”):
{
“settings_version”: “0.0.6”,
“datasets_dir”: “/media/jd/4997BB1603CFE2C4/baijie/detection/yolov8/ultralytics/models/yolo/detect/datasets”,
“weights_dir”: “weights”,
“runs_dir”: “runs”,
“uuid”: “66057f2b3238eb31a8a58e002155b04436a39b61e818fae41d62683ffec27c3c”,
“sync”: true,
“api_key”: “”,
“openai_api_key”: “”,
“clearml”: true,
“comet”: true,
“dvc”: true,
“hub”: true,
“mlflow”: true,
“neptune”: true,
“raytune”: true,
“tensorboard”: true,
“wandb”: true,
“vscode_msg”: true
}
runs

1.2 快速体验

首先在官网下载好预训练权重
yolov11n
参考链接🔗:一篇文章快速认识YOLO11 | 关键改进点 | 安装使用 | 模型训练和推理

from ultralytics import YOLO
 
# 加载预训练的YOLOv11n模型
model = YOLO(r"weights_yolo/yolo11n.pt")
 
# 对'bus.jpg'图像进行推理,并获取结果
results = model.predict(r"test_image/test1.jpg", save=True, imgsz=640, conf=0.5)
 
# 处理返回的结果
for result in results:
    boxes = result.boxes       # 获取边界框信息
    result.show()              # 显示结果

2.YOLOv5-6.0环境安装

2.1 环境安装

1. x86_64系统架构

conda create -n yolov5-6 python=3.7
conda activate yolov5-6

官网的安装教程:
在这里插入图片描述
一般运行到下载torch会非常慢,所以最好单独先安装torch
在这里插入图片描述
笔者的安装指令流程如下:

git clone https://github.com/ultralytics/yolov5  # 1
cd yolov5  # 2
pip install -r requirements.txt  # 3

根据提示决定安装的版本,如上图所示
官网安装命令 https://pytorch.org/get-started/locally/
在这里插入图片描述

# 单独安装pythorch(gpu版本)
pip install torch==1.10.2+cu102 torchvision==0.11.3+cu102 torchaudio===0.10.2+cu102 -f https://download.pytorch.org/whl/cu102/torch_stable.html  # 4
# 再运行官方安装指令,此时安装就会快很多
pip install -r requirements.txt  # 5

2. arrch64系统架构
查看使用的操作系统架构

uname -a

查看NVIDIA边缘端设备(nano、tx2、xavier等)查看安装的jetpack版本

sudo apt-cache show nvidia-jetpack
# 或者用jtop工具查看
jtop

PyTorch for Jetson
官网链接:https://forums.developer.nvidia.com/t/pytorch-for-jetson/72048
在这里插入图片描述
Installing PyTorch for Jetson Platform 安装说明
链接:https://docs.nvidia.com/deeplearning/frameworks/install-pytorch-jetson-platform/index.html
在这里插入图片描述

JetPack SDK 链接:https://developer.nvidia.com/embedded/jetpack

3. 其他依赖库安装
若遇到其他的必要库下载很慢,则可以单独安装并使用镜像源

pip install xxx -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install xxx -i https://pypi.douban.com/simple
# 然后再
pip install -r requirements.txt

requirements.txt的内容如下:
在这里插入图片描述

2.2 下载预训练模型

链接(拉到页面最底下):预训练模型
在这里插入图片描述

2.3 推理

任意新建一个.py文件,写入如下的代码,在终端运行

import torch

# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')  # or yolov5m, yolov5x, custom
# Images
# img = 'https://ultralytics.com/images/zidane.jpg'  # or file, PIL, OpenCV, numpy, multiple
img = 'data/images/zidane.jpg'
# Inference
results = model(img)
# Results
results.print()  # or .show(), .save(), .crop(), .pandas(), etc.

显示结果为:
在这里插入图片描述

2.4 测试

--project指定保存路径;--weights指定测试模型

python detect.py --source data/images/zidane.jpg --weights v5_pre_models/yolov5s.pt --project out --img-size 640
### 安装YOLO框架 对于希望安装YOLO框架的开发者而言,通常有几种方法可以选择。最常见的方式是从官方GitHub仓库获取源码并按照给定说明进行编译和配置[^1]。 #### 方法一:通过Docker容器部署YOLO 使用Docker来设置YOLO环境是一种快速简便的方法,尤其适合那些想要避免复杂依赖关系管理的人群。只需拉取预构建好的镜像即可启动YOLO项目: ```bash docker pull ultralytics/yolov3:latest docker run --rm -it -p 8080:8080 ultralytics/yolov3 ``` 这种方法几乎不需要任何额外配置就能让YOLO运行起来,并且能够轻松切换不同版本之间的差异[^2]。 #### 方法二:本地Python环境中安装YOLO 如果倾向于直接在主机操作系统上操作,则可以通过pip工具安装PyTorch以及YOLO所需的其他库文件。具体步骤如下所示: 1. 创建一个新的虚拟环境(推荐做法) ```bash python3 -m venv yolov4-env source yolov4-env/bin/activate ``` 2. 升级`pip`至最新版本并安装必要的软件包 ```bash pip install --upgrade pip setuptools wheel pip install torch torchvision torchaudio pip install opencv-python matplotlib pyyaml tqdm ``` 3. 下载YOLOv4源代码并进入相应目录执行安装命令 ```bash git clone https://github.com/AlexeyAB/darknet.git cd darknet make ``` 完成上述过程之后,在大多数情况下应该就可以成功搭建YOLO的工作环境了。当然,实际过程中可能还会遇到一些特定于个人系统的调整需求。 #### 方法三:Anaconda环境下安装YOLO 另一种流行的选择是在Anaconda平台上创建新的Conda环境来进行YOLO开发工作。这种方式特别适用于科研人员或者数据科学家群体,因为Anaconda本身集成了大量科学计算相关的资源和支持。 ```bash conda create -n yolo_env python=3.7 conda activate yolo_env conda install pytorch torchvision cudatoolkit=10.1 -c pytorch git clone https://github.com/ultralytics/yolov5 cd yolov5 pip install -r requirements.txt ``` 以上三种方式涵盖了从简单到复杂的各种场景下的解决方案,可以根据自身的实际情况选取最适合的一种来进行尝试。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值