引言
笔者YOLO专栏链接🔗导航:
笔者更新日期 : 2025.5.5
YOLOv11是Ultralytics公司在之前的YOLO版本上推出的最新一代实时目标检测器,支持目标检测、追踪、实力分割、图像分类和姿态估计等任务。(现在YOLO系列更新的速度越来越快,同样上手也更加容易了)
官方🔗:
YOLO11指导官方文档:https://docs.ultralytics.com/models/yolo11/
YOL011代码地址:https://github.com/ultralytics/ultralytics
笔者更新日期 : 2022.3.2
--------------------------------------------------------(以下是过去的笔记,忽略!)
笔者一直都非常偏爱yolov5系列,因其非常友好,上手容易,兼容性也比较高(不会有很多苛刻的要求,尤其是对训练的硬件配置),从搭建环境到训练再到应用,都非常简便。让使用者更多的时间花在实际的应用场景的协调上和改进上。
yolov5的最新版本6.1
源码:https://github.com/ultralytics/yolov5/tree/v6.0
一些更新信息说明:https://github.com/ultralytics/yolov5/releases/tag/v6.0
1. YOLOv11
1.1 环境安装
环境搭建非常简单,只需要几行指令即可
参考链接🔗:YOLOv11入门到入土使用教程(含结构图)
conda create -n yolov11 python=3.9 -y
conda activate yolov11
pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple/
以上即完成环境搭建!!
环境测试如下:
from ultralytics import settings
from ultralytics import YOLO
# View all settings
print(settings)
# Return a specific setting
value = settings["runs_dir"]
print(value)
终端输出:
JSONDict(“/home/jd/.config/Ultralytics/settings.json”):
{
“settings_version”: “0.0.6”,
“datasets_dir”: “/media/jd/4997BB1603CFE2C4/baijie/detection/yolov8/ultralytics/models/yolo/detect/datasets”,
“weights_dir”: “weights”,
“runs_dir”: “runs”,
“uuid”: “66057f2b3238eb31a8a58e002155b04436a39b61e818fae41d62683ffec27c3c”,
“sync”: true,
“api_key”: “”,
“openai_api_key”: “”,
“clearml”: true,
“comet”: true,
“dvc”: true,
“hub”: true,
“mlflow”: true,
“neptune”: true,
“raytune”: true,
“tensorboard”: true,
“wandb”: true,
“vscode_msg”: true
}
runs
1.2 快速体验
首先在官网下载好预训练权重
yolov11n
参考链接🔗:一篇文章快速认识YOLO11 | 关键改进点 | 安装使用 | 模型训练和推理
from ultralytics import YOLO
# 加载预训练的YOLOv11n模型
model = YOLO(r"weights_yolo/yolo11n.pt")
# 对'bus.jpg'图像进行推理,并获取结果
results = model.predict(r"test_image/test1.jpg", save=True, imgsz=640, conf=0.5)
# 处理返回的结果
for result in results:
boxes = result.boxes # 获取边界框信息
result.show() # 显示结果
2.YOLOv5-6.0环境安装
2.1 环境安装
1. x86_64系统架构
conda create -n yolov5-6 python=3.7
conda activate yolov5-6
官网的安装教程:
一般运行到下载torch会非常慢,所以最好单独先安装torch
笔者的安装指令流程如下:
git clone https://github.com/ultralytics/yolov5 # 1
cd yolov5 # 2
pip install -r requirements.txt # 3
根据提示决定安装的版本,如上图所示
官网安装命令 https://pytorch.org/get-started/locally/
# 单独安装pythorch(gpu版本)
pip install torch==1.10.2+cu102 torchvision==0.11.3+cu102 torchaudio===0.10.2+cu102 -f https://download.pytorch.org/whl/cu102/torch_stable.html # 4
# 再运行官方安装指令,此时安装就会快很多
pip install -r requirements.txt # 5
2. arrch64系统架构
查看使用的操作系统架构
uname -a
查看NVIDIA边缘端设备(nano、tx2、xavier等)查看安装的jetpack版本
sudo apt-cache show nvidia-jetpack
# 或者用jtop工具查看
jtop
PyTorch for Jetson
官网链接:https://forums.developer.nvidia.com/t/pytorch-for-jetson/72048
Installing PyTorch for Jetson Platform 安装说明
链接:https://docs.nvidia.com/deeplearning/frameworks/install-pytorch-jetson-platform/index.html
JetPack SDK 链接:https://developer.nvidia.com/embedded/jetpack
3. 其他依赖库安装
若遇到其他的必要库下载很慢,则可以单独安装并使用镜像源
pip install xxx -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install xxx -i https://pypi.douban.com/simple
# 然后再
pip install -r requirements.txt
requirements.txt的内容如下:
2.2 下载预训练模型
链接(拉到页面最底下):预训练模型
2.3 推理
任意新建一个.py文件,写入如下的代码,在终端运行
import torch
# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5m, yolov5x, custom
# Images
# img = 'https://ultralytics.com/images/zidane.jpg' # or file, PIL, OpenCV, numpy, multiple
img = 'data/images/zidane.jpg'
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
显示结果为:
2.4 测试
--project
指定保存路径;--weights
指定测试模型
python detect.py --source data/images/zidane.jpg --weights v5_pre_models/yolov5s.pt --project out --img-size 640