第二节 控制系统的数学模型——传递函数

在这里插入图片描述

博客已搬家,欢迎访问新居:http://lukeyalvin.site,主要涉及SLAM相关方向,目前知识积累尚浅,多多指教!

第二节 控制系统的数学模型——传递函数

了解数学模型的概念,自动控制原理都包含哪些数学模型,怎样将系统转换为数学模型

什么是控制系统的数学模型?控制系统的模型有哪些种?

数学模型是用来描述系统因果关系的数学表达式。有微分方程、传递函数、结构框图、信号流图、频率特性、差分方程、状态方程、传递矩阵等表达形式。

image-20210509154003495

什么是控制系统的数学模型?控制系统的模型有哪些种?

数学模型是用来描述系统因果关系的数学表达式。有微分方程、传递函数、结构框图、信号流图、频率特性、差分方程、状态方程、传递矩阵等表达形式。

系统数学模型建立的过程:

image-20210509190027077

微分方程

RLC电路微分方程的建立(二阶)

image-20210509152437494
u r ( t ) = L d i ( t ) d t + R i ( t ) + u c ( t ) i ( t ) = C d u c ( t ) d t u r ( t ) = L C d 2 u c ( t ) d t 2 + R C d u c ( t ) d t + u c ( t ) u_r(t)=L\frac{d_i(t)}{dt}+R_i(t)+u_c(t)\\ i(t)=C\frac{du_c(t)}{dt}\\ u_r(t)=LC\frac{d^2u_c(t)}{dt^2}+RC\frac{du_c(t)}{dt}+u_c(t) ur(t)=Ldtdi(t)+Ri(t)+uc(t)i(t)=Cdtduc(t)ur(t)=LCdt2d2uc(t)+RCdtduc(t)+</

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Lukey Alvin

谢谢鼓励!越努力越幸运!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值