数列极限:重要极限 π 与 e

"本文探讨了数学分析中的两个重要极限问题:π的几何逼近与e的数列定义。通过圆内接正多边形的半周长与面积推导,证明了π的数列极限存在且单调递增,从而收敛。同时,利用平均值不等式分析了数列{(1+1/n)^n}
摘要由CSDN通过智能技术生成

数学分析笔记——总目录

数列极限:重要极限 π 与 e

重要极限:π

圆周率为圆周长与直径之比,记作 π \pi π

通常,用单位圆(半径为 1 1 1 的圆)的内接正 n n n 边形的半周长 L n L_n Ln 近似。

在这里插入图片描述

设圆 O O O 的半径为 r = 1 r=1 r=1,圆内接正 n n n 边形的半周长为 L n L_n Ln。则
L n = 1 2 ⋅ [ 2 n ⋅ sin ⁡ ( 1 2 ⋅ 360 ° n ) ] = n sin ⁡ 180 ° n L_n = \frac{1}{2}\cdot \left[2n \cdot \sin{\left(\frac{1}{2}\cdot\frac{360 \degree}{n}\right)} \right] = n \sin\frac{180 \degree}{n} Ln=21[2nsin(21n360°)]=nsinn180°

设圆内接正 n n n 边形的面积为 S n S_n Sn,则

S n = n sin ⁡ 180 ° n ⋅ cos ⁡ 180 ° n S_n = n \sin\frac{180 \degree}{n} \cdot \cos \frac{180 \degree}{n} Sn=nsinn180°cosn180°

而单位圆 O O O 的面积明显小于其圆外接正方形的面积。因此有:

S n = n sin ⁡ 180 ° n ⋅ cos ⁡ 180 ° n < 4 S_n = n \sin\frac{180 \degree}{n} \cdot \cos \frac{180 \degree}{n} <4 Sn=nsinn180°cosn180°<4

进而有:

L n = n sin ⁡ 180 ° n < 4 cos ⁡ 180 ° n ≤ 4 cos ⁡ 60 ° n = 8 , ( n ≥ 3 ) L_n = n \sin\frac{180 \degree}{n} <\frac{4}{\cos \frac{180 \degree}{n}} \le \frac{4}{\cos \frac{60 \degree}{n}} =8 ,\quad (n \ge 3) Ln=nsinn180°<cosn180°4cosn60°4=8,(n3)

L n L_n Ln 明显是大于 0 0 0 的,因此,数列 { L n } \{L_n\} {Ln} 有界。

下面,利用 单调有界数列收敛定理 证明数列 { x n } \{x_n\} {xn} 收敛。

证明:

t = 180 ° n ( n + 1 ) t = \frac{180 \degree}{n(n+1)} t=n(n+1)180°,则当 n ≥ 3 n \ge 3 n3 时,显然有 n t ≤ 45 ° nt \le 45 \degree nt45°

然后,考虑 n t ≤ 45 ° nt \le 45 \degree nt45° 时 有什么特殊情况。

tan ⁡ 180 ° n + 1 = tan ⁡ n t = tan ⁡ ( ( n − 1 ) t + t ) = tan ⁡ ( n − 1 ) t + tan ⁡ t 1 − tan ⁡ ( n − 1 ) t ⋅ tan ⁡ t ≥ tan ⁡ ( n − 1 ) t + tan ⁡ t \begin{aligned} \tan {\frac{180 \degree}{n+1}} &= \tan {nt} =\tan ((n-1)t+t) \\ &=\frac{\tan {(n-1)t}+\tan t}{1-\tan (n-1)t \cdot \tan t} \\ &\ge \tan {(n-1)t}+\tan t \end{aligned} tann+1180°=tannt=tan((n1)t+t)=1tan(n1)ttanttan(n1)t+tanttan(n1)t+tant

于是,递归地,又有:

tan ⁡ ( n − 1 ) t ≥ tan ⁡ ( n − 2 ) t + tan ⁡ t \tan (n-1)t \ge \tan (n-2)t + \tan t tan(n1)ttan(n2)t+tant

继续下去,有

tan ⁡ n t ≥ n tan ⁡ t \tan nt \ge n \tan t tanntntant

因此,有

sin ⁡ ( n + 1 ) t = sin ⁡ n t cos ⁡ t + cos ⁡ n t sin ⁡ t = sin ⁡ n t cos ⁡ t ( 1 + cos ⁡ n t sin ⁡ t sin ⁡ n t cos ⁡ t ) = sin ⁡ n t cos ⁡ t ( 1 + tan ⁡ t tan ⁡ n t ) ≤ sin ⁡ n t cos ⁡ t ( 1 + 1 n ) < n + 1 n sin ⁡ n t \begin{aligned} \sin (n+1)t &= \sin nt \cos t + \cos nt \sin t \\ &= \sin nt \cos t \left( 1+ \frac{\cos nt \sin t}{\sin nt \cos t}\right) \\ &= \sin nt \cos t \left( 1+ \frac{\tan t}{\tan nt}\right) \\ &\le \sin nt \cos t \left( 1+\frac{1}{n}\right) \\ & <\frac{n+1}{n} \sin nt \end{aligned} sin(n+1)t=sinntcost+cosntsint=sinntcost(1+sinntcostcosntsint)=sinntcost(1+tannttant)sinntcost(1+n1)<nn+1sinnt

也就是说,当 n ≥ 3 n \ge 3 n3 时,有:

n sin ⁡ ( n + 1 ) t < ( n + 1 ) sin ⁡ n t n \sin (n+1)t < (n+1) \sin nt nsin(n+1)t<(n+1)sinnt

t = 180 ° n ( n + 1 ) t =\frac{180 \degree}{n(n+1)} t=n(n+1)180° 带入,即有

L n = n sin ⁡ 180 ° n < ( n + 1 ) sin ⁡ 180 ° n + 1 = L n + 1 L_n=n \sin {\frac{180 \degree}{n}} < (n+1) \sin {\frac{180\degree}{n+1}}=L_{n+1} Ln=nsinn180°<(n+1)sinn+1180°=Ln+1

虽然, n = 1 , 2 n=1,2 n=1,2 时,没有实际的几何意义,但计算其数值后,明显有:
L 1 ≤ L 2 ≤ L 3 < ⋯ L_1 \le L_2 \le L_3 <\cdots L1L2L3<

也就是说,数列 { x n } \{x_n\} {xn} 为递增数列。

由单调有界数列收敛原理,数列 { L n } \{L_n\} {Ln} 收敛。

重要极限:e

数学中的常量 e e e 可使用数列 { ( 1 + 1 n ) n } \{(1+\frac{1}{n})^{n}\} {(1+n1)n} 进行定义。

设数列 x n = ( 1 + 1 n ) n x_n = (1+\frac{1}{n})^n xn=(1+n1)n y n = ( 1 + 1 n ) n + 1 y_n = (1+\frac{1}{n})^{n+1} yn=(1+n1)n+1

平均值不等式
a 1 + a 2 + ⋯ + a n n ≥ a 1 a 2 ⋯ a n n , a k > 0 , k = 1 , 2 , 3 , ⋯   , n \frac{a_1+a_2+\cdots+a_n}{n} \ge \sqrt[n]{a_1a_2\cdots a_n},\quad a_k>0,k=1,2,3,\cdots,n na1+a2++anna1a2an ,ak>0,k=1,2,3,,n
有:
( a 1 + a 2 + ⋯ + a n n ) n ≥ a 1 a 2 ⋯ a n , a k > 0 , k = 1 , 2 , 3 , ⋯   , n \left(\frac{a_1+a_2+\cdots+a_n}{n}\right)^{n} \ge a_1a_2\cdots a_n,\quad a_k>0,k=1,2,3,\cdots,n (na1+a2++an)na1a2an,ak>0,k=1,2,3,,n

因此有:
x n = ( 1 + 1 n ) n = ( 1 + 1 n ) n ⋅ 1 ≤ ( n ( 1 + 1 n ) + 1 n + 1 ) n + 1 = ( 1 + 1 n + 1 ) n + 1 = x n + 1 x_n = \left(1+\frac{1}{n}\right)^{n} = \left(1+\frac{1}{n}\right)^{n} \cdot 1 \le \left(\frac{n(1+\frac{1}{n})+1}{n+1}\right)^{n+1} =\left(1+\frac{1}{n+1}\right)^{n+1} = x_{n+1} xn=(1+n1)n=(1+n1)n1(n+1n(1+n1)+1)n+1=(1+n+11)n+1=xn+1

即: x n ≤ x n + 1 x_n \le x_{n+1} xnxn+1,数列 { x n } \{x_n\} {xn} 为递增数列。

1 y n = ( n n + 1 ) n + 1 = ( n n + 1 ) n + 1 ⋅ 1 ≤ ( ( n + 1 ) n n + 1 + 1 n + 2 ) n + 2 = ( n + 1 n + 2 ) n + 2 = 1 y n + 1 \frac{1}{y_n} = \left(\frac{n}{n+1}\right)^{n+1} = \left(\frac{n}{n+1}\right)^{n+1} \cdot 1 \le \left(\frac{(n+1)\frac{n}{n+1}+1}{n+2}\right)^{n+2} = \left(\frac{n+1}{n+2}\right)^{n+2}=\frac{1}{y_{n+1}} yn1=(n+1n)n+1=(n+1n)n+11(n+2(n+1)n+1n+1)n+2=(n+2n+1)n+2=yn+11
即: y n ≥ y n + 1 y_n \ge y_{n+1} ynyn+1,数列 { y n } \{y_n\} {yn} 为递减数列。

显然,
2 = x 1 ≤ x n < y n ≤ y 1 = 4 2=x_1 \le x_n<y_n \le y_1=4 2=x1xn<yny1=4
因此数列 { x n } \{x_n\} {xn} { y n } \{y_n\} {yn} 均收敛。

lim ⁡ n → ∞ x n = a \underset{n \rightarrow \infty}{\lim}x_n=a nlimxn=a,而 lim ⁡ n → ∞ y n x n = lim ⁡ n → ∞ ( 1 + 1 n ) = 1 \underset{n \rightarrow \infty}{\lim}\frac{y_n}{x_n}=\underset{n \rightarrow \infty}{\lim}(1+\frac{1}{n})=1 nlimxnyn=nlim(1+n1)=1,因此:
lim ⁡ n → ∞ x n = lim ⁡ n → ∞ y n 。 \underset{n \rightarrow \infty}{\lim}x_n=\underset{n \rightarrow \infty}{\lim}y_n \text{。} nlimxn=nlimyn

在数学中,通常用 e e e 代表这个极限,即:
lim ⁡ n → ∞ ( 1 + 1 n ) n = lim ⁡ n → ∞ ( 1 + 1 n ) n + 1 = e 。 \underset{n \rightarrow \infty}{\lim}\left(1+\frac{1}{n}\right)^{n} =\underset{n \rightarrow \infty}{\lim}\left(1+\frac{1}{n}\right)^{n+1}= e \text{。} nlim(1+n1)n=nlim(1+n1)n+1=e

此外,我们有:
lim ⁡ n → ∞ ( 1 − 1 n ) n = 1 e 。 \underset{n \rightarrow \infty}{\lim}\left(1-\frac{1}{n}\right)^{n}=\frac{1}{e}\text{。} nlim(1n1)n=e1

参考文献

[1] 陈纪修,于崇华,金路著. 数学分析 上册. 第2版. 北京:高等教育出版社, 2004.06.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值