高等数学考研笔记(五)

高等数学考研笔记(五):积分学(上)

  • 不定积分:
    • 相关概念:

      概念释义性质
      原函数对于函数 f ( x ) f(x) f(x),若存在同定义域的函数 F ( x ) F(x) F(x),使得: F ′ ( x ) = f ( x ) F'(x) = f(x) F(x)=f(x),则称 F ( x ) F(x) F(x) f ( x ) f(x) f(x)的原函数 F 0 ( x ) F_0(x) F0(x) f ( x ) f(x) f(x)的一个原函数,则 F 0 ( x ) + C F_0(x)+C F0(x)+C也是 f ( x ) f(x) f(x)的原函数
      原函数若存在,则一定可导,故也一定连续,否则,即使能够求出原函数的形式函数,如$\cfrac{1}{x}\rightarrow ln
      不定积分函数 f ( x ) f(x) f(x)的全体原函数称为 f ( x ) f(x) f(x)的不定积分,记为 ∫ f ( x ) d x \int f(x)dx f(x)dx
      其中 f ( x ) f(x) f(x)称为积分函数 f ( x ) d x f(x)dx f(x)dx称为积分表达式, d x dx dx称为积分变量
      ∫ f ( x ) d x = F ( x ) + C \int f(x)dx = F(x)+C f(x)dx=F(x)+C
      积分曲线 F ( x ) F(x) F(x) f ( x ) f(x) f(x)的一个原函数,则把函数图像 y = F ( x ) y = F(x) y=F(x)称为 f ( x ) f(x) f(x)的一条积分曲线 f ( x ) f(x) f(x)的不定积分的所有积分曲线构成积分曲线簇
    • 微分运算和不定积分的关系:
      d [ ∫ f ( x ) d x ] = f ( x ) d x [ ∫ d f ( x ) ] = f ( x ) + C d[\int f(x)dx] = f(x)dx\\ [\int df(x)] = f(x)+C d[f(x)dx]=f(x)dx[df(x)]=f(x)+C

    • 不定积分/定积分的性质:

      • ∫ k ⋅ f ( x ) d x = k ⋅ ∫ f ( x ) d x \int k\cdot f(x)dx = k\cdot \int f(x) dx kf(x)dx=kf(x)dx
      • ∫ ( f ( x ) ± g ( x ) ) d x = ∫ f ( x ) d x ± ∫ g ( x ) d x \int (f(x)\pm g(x))dx = \int f(x) dx \pm \int g(x) dx (f(x)±g(x))dx=f(x)dx±g(x)dx
      • 柯西不等式 [ ∫ ( f ( x ) ⋅ g ( x ) ) d x ] 2 ≤ [ ∫ f ( x ) d x ] 2 ⋅ [ ∫ g ( x ) d x ] 2 [\int (f(x)\cdot g(x))dx] ^2 \le [\int f(x) dx]^2 \cdot [\int g(x) dx]^2 [(f(x)g(x))dx]2[f(x)dx]2[g(x)dx]2
    • 基本初等函数不定积分表:
      函数不定积分
      f ( x ) = a f(x) = a f(x)=a F ( x ) = a x + C F(x) = ax+C F(x)=ax+C
      f ( x ) = x α ( α ≠ − 1 ) f(x) = x^{\alpha}(\alpha \neq -1) f(x)=xα(α=1) F ( x ) = 1 α + 1 x α + 1 + C F(x) = \frac{1}{\alpha+1}x^{\alpha+1}+C F(x)=α+11xα+1+C
      f ( x ) = a x f(x) = a^x f(x)=ax F ( x ) = 1 ln ⁡ a a x + C F(x) = \frac{1}{\ln a}a^x+C F(x)=lna1ax+C
      f ( x ) = log ⁡ a x f(x) = \log_a x f(x)=logax F ( x ) = x log ⁡ a x − x ln ⁡ a + C F(x) = x\log_a x - \frac{x}{\ln a}+C F(x)=xlogaxlnax+C
      f ( x ) = s i n x f(x) = sinx f(x)=sinx F ( x ) = − c o s x + C F(x) = -cosx+C F(x)=cosx+C
      f ( x ) = c o s x f(x) = cosx f(x)=cosx F ( x ) = s i n x + C F(x) = sinx+C F(x)=sinx+C
      f ( x ) = t a n x f(x) = tanx f(x)=tanx F ( x ) = − ln ⁡ ∣ c o s x ∣ + C F(x) = -\ln \mid cosx\mid+C F(x)=lncosx+C
      f ( x ) = c o t x f(x) = cotx f(x)=cotx F ( x ) = ln ⁡ ∣ s i n x ∣ + C F(x) = \ln \mid sinx\mid+C F(x)=lnsinx+C
      f ( x ) = s e c x f(x) = secx f(x)=secx F ( x ) = l n ∣ s e c x + t a n x ∣ + C F(x) = ln\mid secx + tanx\mid + C F(x)=lnsecx+tanx+C
      f ( x ) = c s c x f(x) = cscx f(x)=cscx F ( x ) = l n ∣ c s c x − c o t x ∣ + C F(x) = ln\mid cscx - cotx\mid + C F(x)=lncscxcotx+C
      f ( x ) = a r c s i n x f(x) = arcsinx f(x)=arcsinx F ( x ) = x a r c s i n x + 1 − x 2 + C F(x) = xarcsinx+\sqrt{1-x^2}+C F(x)=xarcsinx+1x2 +C
      f ( x ) = a r c c o s x f(x) = arccosx f(x)=arccosx F ( x ) = x a r c c o s x − 1 − x 2 + C F(x) = xarccosx-\sqrt{1-x^2}+C F(x)=xarccosx1x2 +C
      f ( x ) = a r c t a n x f(x) = arctanx f(x)=arctanx F ( x ) = x a r c t a n x − 1 2 ln ⁡ ( 1 + x 2 ) + C F(x) = xarctanx-\frac{1}{2}\ln(1+x^2)+C F(x)=xarctanx21ln(1+x2)+C
    • 常见函数不定积分表:
      函数不定积分
      f ( x ) = 1 x f(x) = \cfrac{1}{x} f(x)=x1 F ( x ) = ln ⁡ ∣ x ∣ + C F(x) = \ln\mid x\mid+C F(x)=lnx+C
      f ( x ) = 1 1 − x 2 f(x) = \cfrac{1}{\sqrt{1-x^2}} f(x)=1x2 1 F ( x ) = a r c s i n x + C F(x) = arcsinx + C F(x)=arcsinx+C
      f ( x ) = 1 1 + x 2 f(x) = \cfrac{1}{1+x^2} f(x)=1+x21 F ( x ) = a r c t a n x + C F(x) = arctanx + C F(x)=arctanx+C
      f ( x ) = 1 x 2 ± a 2 f(x) = \cfrac{1}{\sqrt{x^2\pm a^2}} f(x)=x2±a2 1 F ( x ) = l n ∣ x + x 2 ± a 2 ∣ + C F(x) = ln \mid x+\sqrt{x^2\pm a^2}\mid + C F(x)=lnx+x2±a2 +C
      f ( x ) = e x f(x) = e^x f(x)=ex F ( x ) = e x + C F(x) = e^x+C F(x)=ex+C
      f ( x ) = ln ⁡ x f(x) = \ln x f(x)=lnx F ( x ) = x ln ⁡ x − x + C F(x) = x\ln x - x+C F(x)=xlnxx+C
      f ( x ) = s e c 2 x f(x) = sec^2 x f(x)=sec2x F ( x ) = t a n x + C F(x) = tanx + C F(x)=tanx+C
      f ( x ) = c s c 2 x f(x) = csc^2 x f(x)=csc2x F ( x ) = − c o t x + C F(x) = -cotx + C F(x)=cotx+C
      f ( x ) = s h x f(x) = shx f(x)=shx F ( x ) = c h x + C F(x) = chx+C F(x)=chx+C
      f ( x ) = c h x f(x) = chx f(x)=chx F ( x ) = s h x + C F(x) = shx+C F(x)=shx+C
  • 初等积分方法:
    • 第一类换元法: ∫ f ( g ( x ) ) g ′ ( x ) d x = ∫ f ( g ( x ) ) d ( g ( x ) ) = ∫ f ( u ) d u \int f(g(x))g'(x)dx=\int f(g(x))d(g(x))=\int f(u)du f(g(x))g(x)dx=f(g(x))d(g(x))=f(u)du

    • 第二类换元法: ∫ f ( u ) d u = ∫ f ( g ( x ) ) d ( g ( x ) ) = f ( g ( x ) ) g ′ ( x ) d x \int f(u)du = \int f(g(x))d(g(x)) = \it f(g(x))g'(x)dx f(u)du=f(g(x))d(g(x))=f(g(x))g(x)dx

    • 三角换元法:

      • ( a 2 − x 2 ) , ( x 2 + a 2 ) , ( x 2 − a 2 ) (a^2-x^2), (x^2+a^2), (x^2-a^2) (a2x2),(x2+a2),(x2a2)等项的积分
        一般可以通过分别令: x = a s i n t , a t a n t , a s e c t x = asint,atant,asect x=asint,atant,asect换元转化为有理式积分
      • ( x − a ) ( b − x ) \sqrt{(x-a)(b-x)} (xa)(bx) 项的积分 ( a < x < b a<x<b a<x<b):
        一般可以通过令 x = a c o s 2 t + b s i n 2 t x = acos^2t+bsin^2t x=acos2t+bsin2t换元转化为有理式积分
      • 含三角函数的函数 f ( s i n x , c o s x ) f(sinx,cosx) f(sinx,cosx)的积分:
        一般可以通过万能公式代换,令: t = t a n x 2 t = tan\cfrac{x}{2} t=tan2x换元转化为有理式积分
      • 含三角函数 s i n a x × c o s b x sin^ax\times cos^bx sinax×cosbx的积分:
        • a a a, b b b其中之一为奇数,可以令: t = c o s x t = cosx t=cosx (a为奇数)或 t = s i n x t= sinx t=sinx (b为奇数);
        • a a a, b b b都是奇数/偶数,可以令: t = t a n x t = tanx t=tanx
        • 直接通过分部积分得到递推公式进行求解;
    • 双曲换元法:

      ( a 2 − x 2 ) , ( x 2 + a 2 ) , ( x 2 − a 2 ) (a^2-x^2), (x^2+a^2), (x^2-a^2) (a2x2),(x2+a2),(x2a2)等项的积分
      一般可以通过分别令: x = a t h t , a s h t , a c h t x = atht,asht,acht x=atht,asht,acht换元转化为有理式积分

    • 倒代换法:

      当有理分式的分母的次数较高而分子形式又较简单时
      可以尝试通过令: x = 1 t x = \frac{1}{t} x=t1将其转化为形式更为简单的有理分式积分

    • 负代换法:

      当分式中含有 ( 1 + e x ) (1+e^x) (1+ex)时,也可以考虑使用负变换 t = − x t=-x t=x

    • 根式替换法:

      含一次分式的根式的函数 f ( x , ( a x + b c x + d ) s 1 , ( a x + b c x + d ) s 2 , . . , ( a x + b c x + d ) s n ) f(x,(\frac{ax+b}{cx+d})^{s_1},(\frac{ax+b}{cx+d})^{s_2},..,(\frac{ax+b}{cx+d})^{s_n}) f(x,(cx+dax+b)s1,(cx+dax+b)s2,..,(cx+dax+b)sn)
      一般可以通过令: t = ( a x + b c x + d ) s t = (\frac{ax+b}{cx+d})^s t=(cx+dax+b)s,其中 s = [ s 1 , s 2 , . . . s n ] s = [s_1,s_2,...s_n] s=[s1,s2,...sn],将其转化为有理式积分

    • 二项式微分的换元法:

      含二项式微分的函数 f ( z , z q ( a + b z ) p ) f(z,z^q(a+bz)^p) f(z,zq(a+bz)p)
      如果 p , q , p + q p,q,p+q p,q,p+q之中有一个是整数,则
      一般可以通过令: t = a + b z n , 或 者 t = a + b z z n t = \sqrt[n]{a+bz},或者t = \sqrt[n]{\cfrac{a+bz}{z}} t=na+bz ,t=nza+bz , 其中 n n n p p p的分母

    • 二次根式的欧拉替换法

      含二次根式的函数 f ( x , a x 2 + b x + c ) f(x,\sqrt{ax^2+bx+c}) f(x,ax2+bx+c )

      • Δ > 0 Δ> 0 Δ>0,可以令: a x 2 + b x + c = t ( x − λ ) \sqrt{ax^2+bx+c} = t(x -λ) ax2+bx+c =t(xλ) , 其中 λ λ λ为二次式的一实根
      • Δ = 0 Δ=0 Δ=0,可以令: a x 2 + b x + c = ( x − λ ) \sqrt{ax^2+bx+c} = (x -λ) ax2+bx+c =(xλ), 其中 λ λ λ为二次式的唯一实根
      • Δ < 0 Δ< 0 Δ<0 a > 0 a>0 a>0, 可以令: a x 2 + b x + c = t − a x \sqrt{ax^2+bx+c} = t -\sqrt{ax} ax2+bx+c =tax
    • 奇次根式的阿贝尔替换法

      含奇次根式分式的函数 f ( x , 1 ( a x 2 + b x + c ) 2 n + 1 2 ) f(x,\cfrac{1}{(ax^2+bx+c)^{\frac{2n+1}{2}}}) f(x,(ax2+bx+c)22n+11)
      可以考虑令: t = a x + b 2 a x 2 + b x + c t = \cfrac{ax+\frac{b}{2}}{\sqrt{ax^2+bx+c}} t=ax2+bx+c ax+2b

    • 二次根式的部分分式法:

      含二次根式的函数 f ( x , a x 2 + b x + c ) f(x,\sqrt{ax^2+bx+c}) f(x,ax2+bx+c )
      按照分解定律一定可以被化成三种类型的积分:

      • ∫ P ( x ) a x 2 + b x + c d x \int\cfrac{P(x)}{\sqrt{ax^2+bx+c}}dx ax2+bx+c P(x)dx:利用待定系数法,可以令:
        ∫ P ( x ) a x 2 + b x + c d x = Q ( x ) a x 2 + b x + c + λ ∫ d x a x 2 + b x + c \int\cfrac{P(x)}{\sqrt{ax^2+bx+c}} dx= Q(x)\sqrt{ax^2+bx+c}+\lambda \int \cfrac{dx}{\sqrt{ax^2+bx+c}} ax2+bx+c P(x)dx=Q(x)ax2+bx+c +λax2+bx+c dx
        其中 Q ( x ) Q(x) Q(x)是比 P ( x ) P(x) P(x)低一次的多项式, λ λ λ为常数

      • ∫ A ( x − α ) k a x 2 + b x + c d x \int\cfrac{A}{(x-\alpha)^k\sqrt{ax^2+bx+c}}dx (xα)kax2+bx+c Adx:利用倒变换,可以令:
        ( x − α ) = 1 t (x-\alpha) = \frac{1}{t} (xα)=t1将该类型化为上种类型

      • ∫ A x + B ( x 2 + p x + q ) k a x 2 + b x + c d x \int\cfrac{Ax+B}{(x^2+px+q)^k\sqrt{ax^2+bx+c}}dx (x2+px+q)kax2+bx+c Ax+Bdx:利用分式线性替换,可以令:
        x = c t + d t + 1 x = \cfrac{ct+d}{t+1} x=t+1ct+d,选择合适的 c , d c,d c,d将原积分化为: ∫ P ( t ) d t ( t 2 + s ) k α t 2 + β \int \cfrac{P(t)dt}{(t^2+s)^k\sqrt{\alpha t^2+\beta}} (t2+s)kαt2+β P(t)dt的形式,然后再继续分解化为若干个 ∫ A i t d t ( t 2 + s ) k i α t 2 + β \int \cfrac{A_itdt}{(t^2+s)^{k_i}\sqrt{\alpha t^2+\beta}} (t2+s)kiαt2+β Aitdt ∫ B i d t ( t 2 + s ) k i α t 2 + β \int \cfrac{B_idt}{(t^2+s)^{k_i}\sqrt{\alpha t^2+\beta}} (t2+s)kiαt2+β Bidt,再分别利用倒变换和阿贝尔变换求解即可

    • 分部积分法: ∫ u v ′ d x = u v − ∫ u ′ v d x \int uv'dx = uv-\int u'vdx uvdx=uvuvdx

    • 有理真分式积分:

      • 所有有理函数只需要研究去除整式部分后的真分式再分解为的最简分式,如下所示:
        在这里插入图片描述

      • 第一类有理真分式最简形式积分:
        ∫ 1 ( x − a ) k d x = { ln ⁡ ∣ x − a ∣ + C , k = 1 − 1 ( k − 1 ) ( x − a ) k − 1 , k > 1 \int \cfrac{1}{(x-a)^k}dx = \begin{cases} \ln |x-a|+C,& k=1\\ \cfrac{-1}{(k-1)(x-a)^{k-1}},& k>1 \end{cases} (xa)k1dx=lnxa+C,(k1)(xa)k11,k=1k>1

      • 第二类有理真分式最简形式积分:
        ∫ M x + N ( x 2 + p x + q ) k d x = ∫ M 2 ( 2 x + p ) + ( N − M 2 p ) ( x 2 + p x + q ) k d x = M 2 ∫ d ( x 2 + p x + q ) ( x 2 + p x + q ) k + ( N − M 2 p ) ∫ d x ( x 2 + p x + q ) k = M 2 I k 1 + ( N − M 2 p ) I k 2 \int \cfrac{Mx+N}{(x^2+px+q)^k}dx = \int \cfrac{\frac{M}{2}(2x+p)+(N-\frac{M}{2}p)}{(x^2+px+q)^k}dx \\= \cfrac{M}{2}\int \cfrac{d(x^2+px+q)}{(x^2+px+q)^k}+(N-\frac{M}{2}p)\int \cfrac{dx}{(x^2+px+q)^k} \\=\cfrac{M}{2}I_k^1 + (N-\frac{M}{2}p)I_k^2 (x2+px+q)kMx+Ndx=(x2+px+q)k2M(2x+p)+(N2Mp)dx=2M(x2+px+q)kd(x2+px+q)+(N2Mp)(x2+px+q)kdx=2MIk1+(N2Mp)Ik2
        ⇒ \Rightarrow I k 1 I_k^1 Ik1换元求解:
        I k 1 = ∫ d u u k , u = x 2 + p x + q I_k^1 = \int \cfrac{du}{u^k},u =x^2+px+q\\ Ik1=ukdu,u=x2+px+q
        ⇒ \Rightarrow I k 2 I_k^2 Ik2递推求解:
        首 项 : I 1 2 = ∫ d ( x + p 2 ) ( x + p 2 ) 2 + ( q − p 2 4 ) = ∫ d t t 2 + a 2 , 其 中 : t = x + p 2 , a = q − p 2 4 递 推 式 : I k + 1 2 = 1 2 k a 2 [ t ( t 2 + a 2 ) k + ( 2 k − 1 ) I k 2 ] 首项:I_1^2 = \int \cfrac{d(x+\frac{p}{2})}{(x+\frac{p}{2})^2+(q-\frac{p^2}{4})} = \int \cfrac{dt}{t^2+a^2},其中:t=x+\frac{p}{2},a=\sqrt{q-\frac{p^2}{4}}\\ 递推式:I_{k+1}^2 = \cfrac{1}{2ka^2}[\cfrac{t}{(t^2+a^2)^k}+(2k-1)I_k^2] I12=(x+2p)2+(q4p2)d(x+2p)=t2+a2dt,:t=x+2p,a=q4p2 Ik+12=2ka21[(t2+a2)kt+(2k1)Ik2]

      • 有理式分解方法:

        • 待定系数法:设出所有可能的部分分式,再通分求解系数;

        • 奥氏方法:直接通过分离积分的有理部分(有理部分的分母一定是各个部分分式分母的次高次项的乘积,分子利用待定系数)和 无理部分(无理部分的导数的分母一定是各个部分分式分母的一次项的乘积,分子利用待定系数),然后再通分求解系数;

  • 阿贝尔积分:
    • 定义:形如 f ( x , y ) f(x,y) f(x,y)的函数的积分(其中 y y y x x x的代数函数,即满足代数方程 P ( x , y ) = 0 P(x,y) = 0 P(x,y)=0)叫做阿贝尔积分,例如 f ( x , x 2 + p x + q ) f(x,\sqrt{x^2+px+q}) f(x,x2+px+q )

    • 有限形状表示定理:阿贝尔积分是否可以表示成有限形状,主要以 P ( x , y ) = 0 P(x,y)=0 P(x,y)=0决定的曲线的性质所决定,若该曲线能够用参数方程 x = x ( t ) , y = y ( t ) x = x(t),y = y(t) x=x(t),y=y(t)表示,其中 x ( t ) , y ( t ) x(t),y(t) x(t),y(t)是有理函数,则对应的阿贝尔积分一定能够在有限形状中求得;

    • 椭圆积分:一般形如 f ( x , a x 4 + b x 3 + c x 2 + d x + e ) f(x,\sqrt{ax^4+bx^3+cx^2+dx+e}) f(x,ax4+bx3+cx2+dx+e )的函数的积分,不能在有限形状中求出的,称为椭圆积分

      ⇒ \Rightarrow 任何椭圆积分可分解成三类标准椭圆积分
      I : F ( k , z ) = ∫ d z ( 1 − z 2 ) ( 1 − k 2 z 2 ) → z = s i n x F ( k , x ) = ∫ d x 1 − k 2 s i n 2 x I I : E ( k , z ) = ∫ z 2 d z ( 1 − z 2 ) ( 1 − k 2 z 2 ) → z = s i n x E ( k , x ) = ∫ 1 − k 2 s i n 2 x d x I I I : Π ( k , h , z ) = ∫ d z ( 1 + h z 2 ) ( 1 − z 2 ) ( 1 − k 2 z 2 ) → z = s i n x Π ( k , h , x ) = ∫ d x ( 1 + h s i n 2 x ) ( 1 − k 2 s i n 2 x ) I:F(k,z) = \int \cfrac{dz}{ \sqrt{(1-z^2)(1-k^2z^2)}} \xrightarrow{z=sinx} F(k,x) = \int \cfrac{dx}{ \sqrt{1-k^2sin^2x}}\\ II:E(k,z) = \int \cfrac{z^2dz }{ \sqrt{(1-z^2)(1-k^2z^2)}}\xrightarrow{z=sinx} E(k,x) = ∫ \sqrt{1-k^2sin^2x}dx\\ III:\Pi(k,h,z) = \int \cfrac{dz}{ (1+hz^2)\sqrt{(1-z^2)(1-k^2z^2)}} \xrightarrow{z=sinx}\Pi(k,h,x) =\int \cfrac{dx}{(1+hsin^2x)\sqrt{(1-k^2sin^2x)}} I:F(k,z)=(1z2)(1k2z2) dzz=sinx F(k,x)=1k2sin2x dxII:E(k,z)=(1z2)(1k2z2) z2dzz=sinx E(k,x)=1k2sin2x dxIII:Π(k,h,z)=(1+hz2)(1z2)(1k2z2) dzz=sinx Π(k,h,x)=(1+hsin2x)(1k2sin2x) dx

  • 定积分:
    • 定义:
      在这里插入图片描述

    • 函数可积的必要条件

      • 若函数在[a,b]上可积,则函数在[a,b]上有界;
    • 函数可积的充分条件

      • 在[a,b]上连续的函数在[a,b]上可积;
      • 在[a,b]上单调且有界的函数在[a,b]上可积;
      • 在[a,b]上有界且只有有限多个间断点(非无穷间断点)的函数在[a,b]上可积;
    • 可积函数的性质:

      • 函数 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上可积,则函数 ∣ f ( x ) ∣ |f(x)| f(x) [ a , b ] [a,b] [a,b]上可积;
      • 可积性对于加法、减法和乘法运算封闭;
      • 函数 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上可积,则 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]的任一子区间上可积;
      • 改变可积函数在有限个点上的值,既不会破坏其可积性,也不会改变原定积分的值;
    • 定积分运算性质:

      • ∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x \int_a^bf(x)dx = \int_a^cf(x)dx + \int_c^bf(x)dx abf(x)dx=acf(x)dx+cbf(x)dx

      • ∣ ∫ a b f ( x ) d x ∣ ≤ ∫ a b ∣ f ( x ) ∣ d x |\int_a^bf(x)dx| \le\int_a^b|f(x)|dx abf(x)dxabf(x)dx

      • 若在 [ a , b ] [a,b] [a,b]上, f ( x ) ≤ g ( x ) f(x)\le g(x) f(x)g(x),则 ∫ a b f ( x ) d x ≤ ∫ a b g ( x ) d x \int_a^bf(x)dx\le \int_a^bg(x)dx abf(x)dxabg(x)dx

      • 若在 [ a , b ] [a,b] [a,b]上, f ( x ) ≤ g ( x ) f(x)\le g(x) f(x)g(x),且至少存在一点 x 0 , f ( x 0 ) < g ( x 0 ) x_0,f(x_0)<g(x_0) x0,f(x0)<g(x0),则 ∫ a b f ( x ) d x < ∫ a b g ( x ) d x \int_a^bf(x)dx< \int_a^bg(x)dx abf(x)dx<abg(x)dx

      • f ( x ) f(x) f(x) [ − a , a ] [-a,a] [a,a]上是连续的偶函数,则: ∫ − a a f ( x ) d x = 2 ∫ 0 a f ( x ) d x \int_{-a}^af(x)dx = 2\int_{0}^af(x)dx aaf(x)dx=20af(x)dx

      • f ( x ) f(x) f(x) [ − a , a ] [-a,a] [a,a]上是连续的奇函数,则: ∫ − a a f ( x ) d x = 0 \int_{-a}^af(x)dx = 0 aaf(x)dx=0

      • f ( x ) f(x) f(x) R R R上是以 T T T为周期的连续函数,则: ∫ a a + T f ( x ) d x = ∫ 0 T f ( x ) d x , ∀ a ∈ R \int_{a}^{a+T}f(x)dx = \int_{0}^{T}f(x)dx,\forall a\in R aa+Tf(x)dx=0Tf(x)dx,aR

      • 华里士公式:
        ∫ 0 π 2 s i n n x d x = ∫ 0 π 2 c o s n x d x = c ( n − 1 ) ! ! n ! ! , c = { π 2 , n = 2 k   1 , n = 2 k + 1 k = 1 , 2 , . . \int_0^{\frac{\pi}{2}}sin^nxdx = \int_0^{\frac{\pi}{2}}cos^nxdx = c\cfrac{(n-1)!!}{n!!},c= \begin{cases}\cfrac{\pi}{2},&n=2k\\\space 1,&n=2k+1\end{cases}k=1,2,.. 02πsinnxdx=02πcosnxdx=cn!!(n1)!!,c=2π, 1,n=2kn=2k+1k=1,2,..

      • 柯西不等式 ( ∫ a b f ( x ) g ( x ) d x ) 2 ≤ ∫ a b f 2 ( x ) d x × ∫ a b g 2 ( x ) d x (\int_a^bf(x)g(x)dx)^2 \le \int_a^bf^2(x)dx\times\int_a^bg^2(x)dx (abf(x)g(x)dx)2abf2(x)dx×abg2(x)dx

      • 牛顿-莱布尼兹公式 ∫ a b f ( x ) d x = F ( b ) − F ( a ) \int_a^bf(x)dx = F(b) - F(a) abf(x)dx=F(b)F(a),其中 F ( x ) F(x) F(x) f ( x ) f(x) f(x)的原函数

      • 积分中值定理:若函数f(x),g(x)在[a,b]上连续,g(x)在[a,b]上不变号,则:
        ∃ ε ∈ ( a , b ) , ∫ a b f ( x ) g ( x ) d x = f ( ε ) ∫ a b g ( x ) d x \exist \varepsilon \in (a,b),\int_a^bf(x)g(x)dx = f(\varepsilon)\int_a^bg(x)dx ε(a,b),abf(x)g(x)dx=f(ε)abg(x)dx

  • 反常积分:
    • 两种类型:

      • 无穷区间:
        • 上限无穷: ∫ a + ∞ f ( x ) d x = lim ⁡ b → + ∞ ∫ a b f ( x ) d x \int_a^{+\infty}f(x)dx = \lim\limits_{b\rightarrow+∞}\int_a^bf(x)dx a+f(x)dx=b+limabf(x)dx
        • 下限无穷: ∫ − ∞ b f ( x ) d x = lim ⁡ a → − ∞ ∫ a b f ( x ) d x \int_{-\infty}^bf(x)dx = \lim\limits_{a\rightarrow-∞}\int_a^bf(x)dx bf(x)dx=alimabf(x)dx
        • 上下限均为无穷: ∫ − ∞ + ∞ f ( x ) d x = lim ⁡ a → − ∞ ∫ a c f ( x ) d x + lim ⁡ b → + ∞ ∫ c b f ( x ) d x , ∀ c ∈ ( a , b ) \int_{-\infty}^{+\infty}f(x)dx = \lim\limits_{a\rightarrow-∞}\int_a^cf(x)dx+\lim\limits_{b\rightarrow+∞}\int_c^bf(x)dx,\forall c\in (a,b) +f(x)dx=alimacf(x)dx+b+limcbf(x)dx,c(a,b)
      • 无界函数:
        • 上限是奇点: ∫ a b f ( x ) d x = lim ⁡ ε → 0 + ∫ a b − ε f ( x ) d x \int_a^bf(x)dx = \lim\limits_{\varepsilon\rightarrow 0^+}\int_a^{b-\varepsilon}f(x)dx abf(x)dx=ε0+limabεf(x)dx
        • 下限是奇点: ∫ a b f ( x ) d x = lim ⁡ ε → 0 + ∫ a + ε b f ( x ) d x \int_a^bf(x)dx = \lim\limits_{\varepsilon\rightarrow 0^+}\int_{a+\varepsilon}^bf(x)dx abf(x)dx=ε0+lima+εbf(x)dx
        • 上下限均为奇点: ∫ a b f ( x ) d x = lim ⁡ ε → 0 + ∫ a + ε c f ( x ) d x + lim ⁡ ε → 0 + ∫ c b − ε f ( x ) d x , ∀ c ∈ ( a , b ) \int_a^bf(x)dx = \lim\limits_{\varepsilon\rightarrow 0^+}\int_{a+\varepsilon}^cf(x)dx+\lim\limits_{\varepsilon\rightarrow 0^+}\int_c^{b-\varepsilon}f(x)dx,\forall c\in (a,b) abf(x)dx=ε0+lima+εcf(x)dx+ε0+limcbεf(x)dx,c(a,b)
        • 区间内点是奇点: ∫ a b f ( x ) d x = lim ⁡ ε → 0 + ∫ a c − ε f ( x ) d x + lim ⁡ ε → 0 + ∫ c + ε b f ( x ) d x \int_a^bf(x)dx = \lim\limits_{\varepsilon\rightarrow 0^+}\int_a^{c-\varepsilon}f(x)dx+\lim\limits_{\varepsilon\rightarrow 0^+}\int_{c+\varepsilon}^bf(x)dx abf(x)dx=ε0+limacεf(x)dx+ε0+limc+εbf(x)dx
    • 牛顿-莱布尼兹公式:

      • 无穷区间:
        • 上限无穷: ∫ a + ∞ f ( x ) d x = F ( + ∞ ) − F ( a ) \int_a^{+\infty}f(x)dx = F(+∞) - F(a) a+f(x)dx=F(+)F(a)
        • 下限无穷: ∫ − ∞ b f ( x ) d x = F ( b ) − F ( − ∞ ) \int_{-\infty}^bf(x)dx = F(b) - F(-\infty) bf(x)dx=F(b)F()
        • 上下限均为无穷: ∫ − ∞ + ∞ f ( x ) d x = F ( + ∞ ) − F ( − ∞ ) \int_{-\infty}^{+\infty}f(x)dx = F(+\infty) - F(-\infty) +f(x)dx=F(+)F()
      • 无界函数:
        • 上限是奇点: ∫ a b f ( x ) d x = F ( b − ) − F ( a ) \int_a^bf(x)dx = F(b^-)-F(a) abf(x)dx=F(b)F(a)
        • 下限是奇点: ∫ a b f ( x ) d x = F ( b ) − F ( a + ) \int_a^bf(x)dx = F(b)-F(a^+) abf(x)dx=F(b)F(a+)
        • 上下限均为奇点: ∫ a b f ( x ) d x = F ( b − ) − F ( a + ) \int_a^bf(x)dx = F(b^-)-F(a^+) abf(x)dx=F(b)F(a+)
  • 含参积分:
    • 变限积分:若函数f(x)在I上可积, c ∈ I c\in I cI,则称 Φ ( x ) = ∫ c x f ( t ) d t \Phi(x)=\int_c^xf(t)dt Φ(x)=cxf(t)dt为变上限定积分函数;

      ⇒ \Rightarrow 变限积分求导法则
      d [ ∫ a ( x ) b ( x ) f ( x , t ) d t ] d x = f ( x , b ( x ) ) b ′ ( x ) − f ( x , a ( x ) ) a ′ ( x ) + ∫ a ( x ) b ( x ) f x ′ ( x , t ) d t \cfrac{d[\int_{a(x)}^{b(x)}f(x,t)dt]}{dx} = f(x,b(x))b'(x)-f(x,a(x))a'(x)+\int_{a(x)}^{b(x)}f'_x(x,t)dt dxd[a(x)b(x)f(x,t)dt]=f(x,b(x))b(x)f(x,a(x))a(x)+a(x)b(x)fx(x,t)dt
      ⇒ \Rightarrow 一般更为简洁的方法是使用换元法:令 f ( x , t ) = f ( u ) , 则 f ( x , t ) d t = f ( u ) t u ′ d u f(x,t) = f(u), 则f(x,t)dt =f(u)t'_udu f(x,t)=f(u),f(x,t)dt=f(u)tudu

    • 欧拉积分:

      • 第一型欧拉积分( B B B函数): B ( x , y ) = ∫ 0 1 t x − 1 ( 1 − t ) y − 1 d t B(x,y) = \int_0^1 t^{x-1}(1-t)^{y-1}dt B(x,y)=01tx1(1t)y1dt

        ⇒ \Rightarrow 性质:

        B ( x , y ) = B ( y , x ) B(x,y) = B(y,x) B(x,y)=B(y,x)

        B ( x , y ) = Γ ( x ) Γ ( y ) Γ ( x + y ) B(x,y) = \cfrac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} B(x,y)=Γ(x+y)Γ(x)Γ(y)

      • 第二型欧拉积分( Γ Γ Γ函数): Γ ( x ) = ∫ 0 + ∞ e − t t x − 1 d t = 2 ∫ 0 + ∞ e − t 2 t 2 x − 1 d t \Gamma(x) = \int_0^{+\infty}e^{-t}t^{x-1}dt = 2\int_0^{+\infty}e^{-t^2}t^{2x-1}dt Γ(x)=0+ettx1dt=20+et2t2x1dt

        ⇒ \Rightarrow 性质:

        Γ ( x + 1 ) = x Γ ( x ) \Gamma(x+1) = x\Gamma(x) Γ(x+1)=xΓ(x),特殊地,当 x = n ∈ N x = n \in N x=nN时, Γ ( n + 1 ) = n ! \Gamma(n+1) = n! Γ(n+1)=n!
        Γ ( x ) Γ ( 1 − x ) = π s i n π x ( 0 < x < 1 ) \Gamma(x)\Gamma(1-x) = \cfrac{\pi}{sin\pi x}(0<x<1) Γ(x)Γ(1x)=sinπxπ(0<x<1),此性质称为余元公式 ⇒ \Rightarrow Γ ( 1 2 ) = π \Gamma(\cfrac{1}{2}) = \sqrt{\pi} Γ(21)=π



  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值