初识conda在linux中python环境的搭建和使用
第一次使用
之前老师让我下载学校服务器的远程管理软件,然后自己配置Python环境,可以自主运行T-GCN的main.py文件,刚开始是按照具体的方法链接了服务器,但是在自己小心翼翼的工作下,完成了anaconda的安装,但是具体anaconda具体是干什么的还是一头雾水,不过经过同学的指导,让我对anaconda有了一丢丢的自己的理解。
Anaconda是什么?
anaconda是一个用于科学计算的Python发行版,提供了包管理与环境管理的功能,可以很方便地解决多版本python并存、切换以及各种第三方包安装问题。Anaconda利用工具/命令conda来进行package和environment的管理,并且已经包含了Python和相关的配套工具。
这里先解释下conda、anaconda这些概念的差别。conda可以理解为一个工具,也是一个可执行命令,其核心功能是包管理与环境管理。包管理与pip的使用类似,环境管理则允许用户方便地安装不同版本的python并可以快速切换。
Anaconda则是一个打包的集合,里面预装好了conda、某个版本的python、众多packages、科学计算工具等等,所以也称为Python的一种发行版。人话就是,一个大的控制器,控制一个系统上通过文件包形式在不同的包中可以配置不同的python环境,在使用的时候,通过conda命令行来切换,激活,不同的环境。
Anaconda在linux系统中管理虚拟环境
- 创建一个虚拟环境,例:安装python=3.5版本,名字为Ten
conda create -n Ten python=3.5
- 删除虚拟环境Ten,删除之后该环境中的安装包也被删除
conda remove -n Ten --all
- Linux下查看已有环境:
conda-env list
添加、激活、安装第三方包命令
- 激活目标虚拟环境 tensorflow
conda activate tensorflow
- 查看该环境下已有的安装包
conda list
- 在虚拟环境下安装包,以numpy=1.1版本为例,
conda install numpy=1.12
注意:退出这个环境之后,该安装包就不能使用了,这也就是anaconda的管理机制
- 退出当前虚拟环境
conda deactivate
- 复制虚拟环境,例:
将tensorflow复制到Ten
conda create -n Ten --clone tensorflow
可以利用克隆和删除命令给虚拟环境重命名
自己的总结
刚开始自己对于Anaconda的使用是一头雾水,不知道他是干什么的,但是经过请教同学,将心中的疑问问出来的方式,让自己慢慢的知晓anaconda的大概作用,在之后的学习生活中,自己要不断的学习新的知识,当遇到不懂的词条,多搜一搜,多看看别人的博客,也要敢于试错,不断尝试。