初识conda在linux中python环境的搭建和使用

本文介绍了初学者如何在Linux中使用Anaconda进行Python环境的搭建,包括创建、删除虚拟环境,管理conda和pip包,以及如何激活和复制环境。重点讲解了Anaconda作为科学计算工具的作用和其在环境管理中的便利性。
摘要由CSDN通过智能技术生成

第一次使用

之前老师让我下载学校服务器的远程管理软件,然后自己配置Python环境,可以自主运行T-GCN的main.py文件,刚开始是按照具体的方法链接了服务器,但是在自己小心翼翼的工作下,完成了anaconda的安装,但是具体anaconda具体是干什么的还是一头雾水,不过经过同学的指导,让我对anaconda有了一丢丢的自己的理解。

Anaconda是什么?

anaconda是一个用于科学计算的Python发行版,提供了包管理与环境管理的功能,可以很方便地解决多版本python并存、切换以及各种第三方包安装问题。Anaconda利用工具/命令conda来进行package和environment的管理,并且已经包含了Python和相关的配套工具。

这里先解释下conda、anaconda这些概念的差别。conda可以理解为一个工具,也是一个可执行命令,其核心功能是包管理与环境管理。包管理与pip的使用类似,环境管理则允许用户方便地安装不同版本的python并可以快速切换。

Anaconda则是一个打包的集合,里面预装好了conda、某个版本的python、众多packages、科学计算工具等等,所以也称为Python的一种发行版。人话就是,一个大的控制器,控制一个系统上通过文件包形式在不同的包中可以配置不同的python环境,在使用的时候,通过conda命令行来切换,激活,不同的环境。

Anaconda在linux系统中管理虚拟环境

  • 创建一个虚拟环境,例:安装python=3.5版本,名字为Ten
conda create -n Ten python=3.5

在这里插入图片描述

  • 删除虚拟环境Ten,删除之后该环境中的安装包也被删除
conda remove -n Ten --all

在这里插入图片描述

  • Linux下查看已有环境:
conda-env list    

在这里插入图片描述

添加、激活、安装第三方包命令

  • 激活目标虚拟环境 tensorflow
conda activate tensorflow

c此处的tensorflow是我自己环境的名称,根据不同的名称记得改一下名称

  • 查看该环境下已有的安装包
conda list

一部分已安装包

  • 在虚拟环境下安装包,以numpy=1.1版本为例,
conda install numpy=1.12

实在tensorflow环境中操作的

注意:退出这个环境之后,该安装包就不能使用了,这也就是anaconda的管理机制

  • 退出当前虚拟环境
conda deactivate

在这里插入图片描述

  • 复制虚拟环境,例:将tensorflow复制到Ten
conda create -n Ten --clone tensorflow

可以利用克隆和删除命令给虚拟环境重命名

自己的总结

刚开始自己对于Anaconda的使用是一头雾水,不知道他是干什么的,但是经过请教同学,将心中的疑问问出来的方式,让自己慢慢的知晓anaconda的大概作用,在之后的学习生活中,自己要不断的学习新的知识,当遇到不懂的词条,多搜一搜,多看看别人的博客,也要敢于试错,不断尝试。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Philo`

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值