1.黎曼可积的必要条件:
函数在闭区间有界。
2.黎曼可积的充分条件
<2.1> 函数在闭区间连续 。
<2.2>函数在闭区间单调。
单调指f(x1) < f(x2) ,if x1 < x2 在整个区间内可以有不连续的点,但是函数在区间内都是有定义的。
<2.3>函数在整个区间内有有限个第一类(可去和跳跃)间断点。
这些条件都是讨论黎曼可积,除了黎曼积分还有勒贝格积分
1.黎曼可积的必要条件:
函数在闭区间有界。
2.黎曼可积的充分条件
<2.1> 函数在闭区间连续 。
<2.2>函数在闭区间单调。
单调指f(x1) < f(x2) ,if x1 < x2 在整个区间内可以有不连续的点,但是函数在区间内都是有定义的。
<2.3>函数在整个区间内有有限个第一类(可去和跳跃)间断点。
这些条件都是讨论黎曼可积,除了黎曼积分还有勒贝格积分