关于无穷级数收敛的充要条件的猜想

关于无穷级数收敛的充要条件的猜想:
∫ 1 + ∞ f ( x ) = c ( c 为 常 数 ) \int_1^{+\infty}f(x)=c \quad (c为常数) 1+f(x)=c(c)
灵感:

1. 积分判别法(正项级数)
2. 数列收敛的基本性质(数列级数的前N项与数列级数的敛散性无关)

一、积分判别法的定义:若单调递减的函数f(x)在[1,+ ∞ \infty )上非负,则级数 ∑ n = 1 ∞ f ( n ) \sum_{n=1}^{\infty}f(n) n=1f(n)与反常积分 ∫ 1 + ∞ f ( x ) d x \int_1^{+\infty}f(x)dx 1+f(x)dx具有相同的敛散性。
同理,若单调递增的函数f(x)在[1,+ ∞ \infty )上非正,则级数 ∑ n = 1 ∞ f ( n ) \sum_{n=1}^{\infty}f(n) n=1f(n)与反常积分 ∫ 1 + ∞ f ( x ) d x \int_1^{+\infty}f(x)dx 1+f(x)dx具有相同的敛散性。
根据微积分基本定理, ∫ 1 + ∞ f ( x ) = lim ⁡ a → + ∞ F ( a ) − F ( 1 ) \int_1^{+\infty}f(x)={\lim\limits_{a \to +\infty}}F(a)-F(1) 1+f(x)=a+limF(a)F(1)
故级数 ∑ n = 1 ∞ f ( n ) \sum_{n=1}^{\infty}f(n) n=1f(n)的敛散性取决于 lim ⁡ a → + ∞ F ( a ) {\lim\limits_{a \to +\infty}}F(a) a+limF(a)是否收敛,即 lim ⁡ a → + ∞ F ( a ) {\lim\limits_{a \to +\infty}}F(a) a+limF(a)是否存在。
lim ⁡ a → + ∞ F ( a ) = b {\lim\limits_{a \to +\infty}}F(a)=b a+limF(a)=b, 则 ∫ 1 + ∞ f ( x ) = lim ⁡ a → + ∞ F ( a ) − F ( 1 ) = b − F ( 1 ) = c \int_1^{+\infty}f(x)={\lim\limits_{a \to +\infty}}F(a)-F(1)= b-F(1)=c\quad 1+f(x)=a+limF(a)F(1)=bF(1)=c (其中,c为常数)

二、 ∫ 1 + ∞ f ( x ) = ∫ 1 N f ( x ) d x + ∫ N + ∞ f ( x ) d x \int_1^{+\infty}f(x)=\int_1^N{f(x)dx}+\int_N^{+\infty}f(x)dx 1+f(x)=1Nf(x)dx+N+f(x)dx,若确定一个N,使得f(x)在 [ N , + ∞ ) [N,{+\infty}) [N,+)上为非负单调递减函数(或为非正单调递增函数),则仍可以使用积分判别法判断级数 ∑ n = 1 ∞ f ( n ) \sum_{n=1}^{\infty}f(n) n=1f(n)的敛散性。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值