幂级数

由幂函数序列\{a_n(x-x_0)^n\}所产生的函数项级数\sum_{n=0}^{\infty}a_n(x-x_0)^n=a_0+a_1(x-x_0)+a_2(x-x_0)^2+...+a_n(x-x_0)^n+...,(1)它称为幂级数。当x_0=0即得\sum_{n=0}^{\infty}a_n(x)^n=a_0+a_1(x)+a_2(x)^2+...+a_n(x)^n+...,(2).

一.幂级数的收敛区间

定理1(阿贝尔定理)

若幂级数(2)在x=\overline{x}\neq 0处收敛,则对满足不等式\left | x \right |<\left | \overline{x} \right |的任何x,幂级数(2)收敛而且绝对收敛;若幂级数(2)在x=\overline{x}在发散,则对满足不等式\left | x \right |>\left | \overline{x} \right |的任何x,幂级数(2)发散。

幂级数(2)的收敛域是以原点为中心的区间,若以2R表示区间的长度,则称R为幂级数的收敛半径。实际上,它就是使得幂级数(2)收敛的那些收敛点的绝对值的上确界,称(-R,R)为幂级数(2)的收敛区间。

定理2   

对于幂级数(2),若\lim_{n\to \infty}\sqrt[n]{\left |a_n \right |}=\rho ,则当

(i)0<\rho <+\infty时,幂级数(2)的收敛半径R=\frac{1}{\rho };

(ii)\rho =0时,幂级数(2)的收敛半径R=+\infty;

(iii)\rho =+\infty时,幂级数(2)的收敛半径R=0.

定理3(柯西-阿达马(Cauchy-Hadamard)定理)

对于幂级数(2),设\rho =\overline{\lim_{n\to \infty}}\sqrt[n]{\left | a_n \right |},(3)则当

(i)\rho =0时,收敛半径R=\frac{1}{\rho };

(ii)\rho =0时,R=+\infty;

(iii)\rho =+\infty时,R=0.

注意:由于上极限(3)总是存在的,因而任一幂级数总能由(3)式得到它的收敛半径。

定理4

若幂级数(2)的收敛半径为R(>0),则幂级数(2)在它的收敛区间(-R,R)内任一闭区间[a,b]上都一致收敛。

定理5

若幂级数(2)的收敛半径为R(>0),且在x=R(或x=-R)时收敛,则级数(2)在[0,R](或[-R,0])上一致收敛。

二.幂级数的性质

定理6

(i)幂级数(2)的和函数是(-R,R)上的连续函数;

(ii)若幂级数(2)在收敛区间的左(右)端点上收敛;

则其和函数也在这一端点上右(左)连续。

在讨论幂级数的逐项求导域逐项求积之前,先要确定幂级数(2)在收敛区间(-R,R)上逐项求导域逐项求积后所得到的幂级数a_1+2a_2x+3a_3x^2+...+na_nx^{n-1}+...,(4)a_0x+\frac{a_1}{2}x^2+\frac{a_2}{3}x^3+...+\frac{a_n}{n+1}x^{n+1}+...,(5)的收敛区间。

定理7

幂级数(2)域幂级数(4)、(5)具有相同的收敛区间。

定理8

设幂级数(2)在收敛区间(-R,R)上的和函数为f,若x为(-R,R)上任意一点,则

(i)f在点x可导,且f'(x)=\sum_{n=1}^{\infty}na_nx^{n-1};

(ii)f在0与x之间的这个区间上可积,且\int_{0}^{x}f(t)dt=\sum_{n=0}^{\infty}\frac{a_n}{n+1}x^{n+1}.

定理8指出幂级数在收敛区间内可逐项求导与逐项求积。

推论1:记f为幂级数(2)在收敛区间(-R,R)上的和函数,则在(-R,R)上f具有任何阶导数,且可逐项求导任何次。

推论2:记f为幂级数(2)在点x=0某领域上的和函数,则幂级数(2)的系数与f在x=0处的各阶导数有如下关系:a_0=f(0),a_n=\frac{f^{(n)}(0)}{n!}(n=1,2,...).

三.幂级数的运算

定义

若幂级数\sum_{n=0}^{\infty}a_n(x)^n=a_0+a_1(x)+a_2(x)^2+...+a_n(x)^n+...,(2)\sum_{n=0}^{\infty}b_n(x)^n=b_0+b_1(x)+b_2(x)^2+...+b_n(x)^n+...,(6)在点x=0的某邻域内有相同的和函数,则称这两个幂级数在该邻域内相等。

定理9

若幂级数(2)与(6)在点x=0的和函数为奇(偶)函数,则它们同次幂项的系数相等,即a_n=b_n(n=1,2,...)

根据这个定理还可推得:若幂级数(2)的和函数为奇(偶)函数,则(2)式不出现偶(奇)函数的项。

定理10

若幂级数(2)与(6)的收敛半径分别为R_aR_b则有

\lambda \sum_{n=0}^{\infty}a_nx^n=\sum_{n=0}^{\infty}\lambda a_nx^n,\left | x \right |<R_a,

\sum_{n=0}^{\infty}a_nx^n\pm \sum_{n=0}^{\infty}b_nx^n=\sum_{n=0}^{\infty}(a_n\pm b_n)x^n,\left | x \right |<R,

(\sum_{n=0}^{\infty}a_nx^n)(\sum_{n=0}^{\infty}b_nx^n)=(\sum_{n=0}^{\infty}c_nx^n),\left | x \right |<R,

式中的λ为常数,R=min\{R_a,R_b\},c_n=\sum_{k=0}^{n}a_kb_{n-k}.

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值