目录
前言
本文讨论了京东Spark计算引擎研发团队关于自主研发并落地Remote Shuffle Service,助力京东大促场景的探索和实践。近年来,大数据技术在各行各业的应用越来越广泛,Spark自UCBerkeley的AMP实验室诞生到如今3.0版本的发布,已有十年之久,俨然已经成为大数据计算领域名副其实的老将。虽经过不断的迭代和优化,Spark功能日趋成熟与完善,但在性能及稳定性方面,仍然还有很多可以提升的地方。Shuffle过程作为MapReduce编程模型的性能瓶颈,就是其中重点之一。我们希望在京东超大规模数据体量及复杂业务场景的背景下,通过自研并落地Remote Shuffle Service服务,解决External Shuffle Service中存在的现有问题,打造稳定高效的JDSpark计算引擎,助力京东大促过程中的一些应用实践,能够给大家提供一些思路和启发,同时也欢迎大家多多交流,给我们提出宝贵建议。
ESS问题及现状
在此之前,相当一部分公司在使用Spark计算引擎时,对于Shuffle Service的支持采用了社区的External Shuffle Service解决方案,京东原来的架构也不例外。该方案需要在所有Executor计算节点所在的NodeManager上部署一个External Shuffle Service服务,当Executor针对Shuffle过程进行相关数据处理时,Shuffle Write阶段会先将Shuffle数据写到本地存储介质,Shuffle Read阶段读取Shuffle数据文件时不再需要直接请求Executor,转而请求与Executor位于同一节点上的External Shuffle Service服务,获取Shuffle数据文件,完成Shuffle过程的数据传递。这样就可以解决由于Executor意外终止造成的数据丢失问题,继而实现对Spark做动态资源功能的支持。但该方案在架构及使用上存在一些限制与不足:
1. 架构不清晰:External Shuffle Service必须与Executor计算节点所绑定,两者位于同一个NodeManager上,这就造成了架构不清晰、系统健壮性不高的问题,同时不利于K8s等容器级别框架方案的部署与使用。
2. 资源利用低:Executor的内存使用会根据任务的具体情况而进行调节,目的是为了避免Spill过程造成的Overhead,但在一些场景下可能会存在内存资源较早的先于CPU资源而耗尽的情况,容易造成集群资源利用率低的问题。
3. 缺乏整体性:不同Executor的Shuffle数据分散在不同的Node上,数据文件的存储及管理较为分散,缺乏整体性,比如:不利于针对同一个Stage的Ta