YOLOv8改进实战 | 注意力篇 | 引入基于跨空间学习的高效多尺度注意力EMA,小目标涨点明显


在这里插入图片描述


在这里插入图片描述
YOLOv8专栏导航点击此处跳转


前言

YOLOv8 是由 YOLOv5 的发布者 Ultralytics 发布的最新版本的 YOLO。它可用于对象检测、分割、分类任务以及大型数据集的学习,并且可以在包括 CPU 和 GPU 在内的各种硬件上执行。

YOLOv8 是一种尖端的、最先进的 (SOTA) 模型,它建立在以前成功的 YOLO 版本的基础上,并引入了新的功能和改进,以进一步提高性能和灵活性。YOLOv8 旨在快速、准确且易于使用,这也使其成为对象检测、图像分割和图像分类任务的绝佳选择。具体创新包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,还支持YOLO以往版本,方便不同版本切换和性能对比。


一、EMA介绍

在这里插入图片描述

论文链接:Efficient Multi-Scale Attention Module with Cross-Spatial Learning

在这里插入图片描述

论文提出了一种新颖的高效多尺度注意力(EMA)模块。EMA模块旨在保留每个通道的信息,同时减少计算开销。它通过重塑部分通道到批次维度,并将通道雏度分组为多个子特征,使得空间语义特征在每个特征组内均匀分布。此外,EMA模块通过编码全局信息来重新校准每个并行分支中的通道权重,并通过跨维度交互来捕获像素级别的成对关系。

在这里插入图片描述

创新点主要包括:

  1. 高效多尺度注意力(EMA):新型的注意力机制,同时减少计算开销和保留每个通道的关键信息

  2. 通道和批次维度的重组:通过重新组织通道维度和批次维度,提高了模型处理特征的能力。

  3. 跨维度交互:模块利用跨维度的交互来捕捉像素级别的关系

  4. 全局信息编码和通道权重校准:在并行分支中编码全局信息,用于通道权重的重新校准,增强了特征表示的能力。

二、代码实现

代码目录

  • 按下面文件夹结构创建文件(相比于在原有ultralytics/nn/modules文件夹下的相关文件中直接添加便于管理
    - ultralytics
    	- nn
    		- extra_modules
    			- __init__.py
    			- attention.py
    		- modules
    

ultralytics/nn/extra_modules/__init__.py中添加:

from .attention import *

ultralytics/nn/extra_modules/attention.py中添加:

import torch
from torch import nn

__all__ = ['EMA']


class EMA(nn.Module):
    def __init__(self, channels, factor=8):
        super(EMA, self).__init__()
        self.groups = factor
        assert channels // self.groups > 0
        self.softmax = nn.Softmax(-1)
        self.agp = nn.AdaptiveAvgPool2d((1, 1))
        self.pool_h = nn.AdaptiveAvgPool2d((None, 1))
        self.pool_w = nn.AdaptiveAvgPool2d((1, None))
        self.gn = nn.GroupNorm(channels // self.groups, channels // self.groups)
        self.conv1x1 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=1, stride=1, padding=0)
        self.conv3x3 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=3, stride=1, padding=1)

    def forward(self, x):
        b, c, h, w = x.size()
        group_x = x.reshape(b * self.groups, -1, h, w)  # b*g,c//g,h,w
        x_h = self.pool_h(group_x)
        x_w = self.pool_w(group_x).permute(0, 1, 3, 2)
        hw = self.conv1x1(torch.cat([x_h, x_w], dim=2))
        x_h, x_w = torch.split(hw, [h, w], dim=2)
        x1 = self.gn(group_x * x_h.sigmoid() * x_w.permute(0, 1, 3, 2).sigmoid())
        x2 = self.conv3x3(group_x)
        x11 = self.softmax(self.agp(x1).reshape(b * self.groups, -1, 1).permute(0, 2, 1))
        x12 = x2.reshape(b * self.groups, c // self.groups, -1)  # b*g, c//g, hw
        x21 = self.softmax(self.agp(x2).reshape(b * self.groups, -1, 1).permute(0, 2, 1))
        x22 = x1.reshape(b * self.groups, c // self.groups, -1)  # b*g, c//g, hw
        weights = (torch.matmul(x11, x12) + torch.matmul(x21, x22)).reshape(b * self.groups, 1, h, w)
        return (group_x * weights.sigmoid()).reshape(b, c, h, w)

注册模块

ultralytics/nn/tasks.py文件开头添加:

from ultralytics.nn.extra_modules import *

ultralytics/nn/tasks.py文件中parse_model函数添加:

elif m in {EMA}:
    args = [ch[f], *args]

配置yaml文件

yolov8-ema.yaml

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)
  - [-1, 1, EMA, []]

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 19 (P4/16-medium)
  - [-1, 1, EMA, []]

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 23 (P5/32-large)
  - [-1, 1, EMA, []]

  - [[16, 20, 24], 1, Detect, [nc]]  # Detect(P3, P4, P5)


三、模型测试

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO

model = YOLO("yolov8n-ema.yaml")  # build a new model from scratch
                   from  n    params  module                                       arguments
  0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  1                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  2                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
  3                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
  4                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
  5                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]
  6                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
  7                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
  8                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
  9                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 12                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 15                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]
 16                  -1  1       672  ultralytics.nn.extra_modules.attention.EMA   [64]
 17                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 18            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 19                  -1  1    123648  ultralytics.nn.modules.block.C2f             [192, 128, 1]
 20                  -1  1      2624  ultralytics.nn.extra_modules.attention.EMA   [128]
 21                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 22             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 23                  -1  1    493056  ultralytics.nn.modules.block.C2f             [384, 256, 1]
 24                  -1  1     10368  ultralytics.nn.extra_modules.attention.EMA   [256]
 25        [16, 20, 24]  1    897664  ultralytics.nn.modules.head.Detect           [80, [64, 128, 256]]
YOLOv8n-ema summary: 249 layers, 3170864 parameters, 3170848 gradients, 9.1 GFLOPs

四、模型训练

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n-ema.yaml")  # build a new model from scratch

# Use the model
model.train(
    data="./mydata/data.yaml",
    epochs=300,
    batch=32,
    imgsz=640,
    workers=8,
    device=0,
    project="runs/train",
    name='exp')  # train the model

五、总结

  • 模型的训练具有很大的随机性,您可能需要点运气和更多的训练次数才能达到最高的 mAP。
    在这里插入图片描述
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
EMA是一种基于空间学习高效多尺度注意力模块。该模块能够有效地在不同尺度上提取图像特征,并在具有不同空间分辨率的输入图像上进行特征的加权融合。 EMA模块利用注意力机制,通过学习图像的不同区域的重要程度来实现特征加权。它包括两个主要步骤:特征映射生成和注意力机制计算。首先,通过卷积操作,将输入图像分别映射到多个尺度上,并提取出不同尺度的特征映射。然后,在每个尺度上,通过计算特征映射的平均值和最大值,得到特征的池化表示。接下来,根据池化特征,计算每个尺度上的注意力权重。这些权重可以反映不同尺度上的特征的重要程度。最后,通过将特征映射和对应的注意力权重进行加权融合,得到最终的多尺度特征表示。 EMA模块的优势在于它能够自动学习图像中不同尺度的特征的重要性,并进行自适应的特征融合。通过空间学习EMA模块可以在保持高效的同时,提取出具有丰富特征信息的多尺度表示。这对于一些图像分析任务,如目标检测和图像分割,具有重要的应用价值。同时,EMA模块的设计思路也可以为其他基于注意力机制的深度学习模型提供参考和启发。 总之,EMA是一种基于空间学习高效多尺度注意力模块,可以有效地提取图像特征,并在不同尺度上进行特征的加权融合。它在图像分析任务中具有重要的应用价值,同时也为其他模型的设计提供了借鉴和启发。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

w94ghz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值