【YOLOv8改进】EMA(Efficient Multi-Scale Attention):基于跨空间学习的高效多尺度注意力 (论文笔记+引入代码)

本文介绍了YOLOv8中引入的EMA(Efficient Multi-Scale Attention)模块,这是一种结合通道和空间信息的高效注意力机制。EMA通过通道维度重塑和并行子网络设计,提升了特征表示能力,同时保持了模型的计算效率。在目标检测任务上,EMA模块展现出优于传统注意力模块的性能,具有广泛的应用前景。
摘要由CSDN通过智能技术生成

YOLO目标检测创新改进与实战案例专栏

专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLO基础解析+创新改进+实战案例

介绍

image-20240523225118657

摘要

通道或空间注意力机制在许多计算机视觉任务中表现出显著的效果,可以生成更清晰的特征表示。然而,通过通道维度缩减来建模跨通道关系可能会对提取深度视觉表示带来副作用。本文提出了一种新颖高效的多尺度注意力(EMA)模块。该模块着重于保留每个通道的信息并减少计算开销,我们将部分通道重新调整为批次维度,并将通道维度分组为多个子特征,使空间语义特征在每个特征组内分布均匀。具体来说,除了在每个并行分支中对全局信息进行编码以重新校准通道权重外,这两个并行分支的输出特征还通过跨维度交互进一步聚合,以捕捉像素级的成对关系。我们在图像分类和目标检测任务上进行了广泛的消融研究和实验,使用流行的基准数据集(如CIFAR-100、ImageNet-1k、MS COCO和VisDrone2019)来评估其性能。

创新点

  1. 高效的多尺度注意力机制:EMA模块提出了一种高效的多尺度注意力机制,能够同时捕获通道和空间信息,并在不增加太多参数和计算成本的情况下有效地提高特征表示能力。

  2. 通道维度重塑:EMA模块通过将部分通道重塑为批量维度,将通道维度分组为多个子特征,从而使空间语义特征在每个特征组内得到良好分布,提高了特征的表达能力。

  3. 并行子网络设计:EMA模块采用了并行子网络设计,有助于捕获跨维度的交互作用和建立维度间的依赖关系,提高了模型对长距离依赖关系的建模能力。

  4. 性能优越:EMA模块在目标检测任务中表现出色,相较于传统的注意力模块(如CA和CBAM),EMA在保持模型尺寸和计算效率的同时,取得了更好的性能表现,证明了其在提升模型性能方面的有效性和高效性。

  5. 适用性广泛:EMA模块的模型尺寸适中,适合在移动终端上部署,并且在各种计算机视觉任务中都表现出色,具有广泛的应用前景和实际意义。

文章链接

论文地址:论文地址

代码地址:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO大师

你的打赏,我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值