介绍
以下几篇论文,有几个功能:
- 作为异常检测benchmark
- 作为异常检测综述
- 作为异常检测baseline实验
异常检测领域benchmark
IM-IAD
- 论文:https://arxiv.org/pdf/2301.13359
- 期刊:TCYB
- 时间:2024
- 项目:https://github.com/M-3LAB/open-iad
- 单位:南方科技大学, 腾讯优图, 中科院
- 介绍:统一的工业AD基准,首次用于评估这些算法执行的效果,其中包括不同级别的监督(无监督与完全监督)、学习范式(few-shot、连续和噪声标签)和效率(内存使用和推理速度)。然后,我们构建了一个全面的图像异常检测基准,其中包括7个具有统一设置的主要数据集上的 19 种算法。AD上的大量实验(总共 17017)提供了对AD算法重新设计或选择的深入见解。
- 包含数据集:
MVTec AD,MVTec LOCO-AD ,BTAD,MPDD,MTD ,VisA ,DAGM
- 包含方法:
- 评价指标
- 常见异常检测方案:
ADer
-
论文:https://arxiv.org/pdf/2406.03262v1
-
期刊:arxiv
-
时间:2024
-
项目:https://github.com/zhangzjn/ader
-
单位:腾讯优图,浙大,华科大
-
介绍:该基准包括来自工业领域和医学领域的多个数据集,实现了 15 种最先进的方法和9个综合指标。此外,我们开源了gpu辅助的adeval包来解决大规模数据上耗时的mau-pro等指标的缓慢评估问题,显著减少了1000倍以上的评估时间
-
包含数据集:Mvtec AD , Mvtec AD 3D, Mvtec loco-AD VisA,BTAD, MPDD MAD_real ,MAD_sim,real-iad。uni-medical,coco-ad
-
常见异常检测方案:
-
测试模型对比结果
MMAD
- 论文:https://arxiv.org/pdf/2410.09453
- 期刊:arxiv
- 时间:2024
- 项目:https://github.com/jam-cc/MMAD
- 单位:南方科技大学, 腾讯优图, 阿尔伯塔大学, 上交
- 介绍:MMAD是首个多模态大语言模型工业异常检测基准,通过生成语义标注为所有多模态大模型提供了公平的能力评估。从4个公共数据集中的38类工业产品中收集了8,366个样本,共生成了7个关键子任务中的39,672个选择题。
- 包含数据集:MVTec AD,MVTec LOCO AD,GoodsAD,ViSA
- 测试模型对比结果
Anomalib
- 论文:https://arxiv.org/pdf/2202.08341
- 期刊:ICIP
- 时间:2022
- 项目:https://github.com/openvinotoolkit/anomalib
- 单位:腾讯优图,浙大,华科大
- 包含数据:
image:CIFAR,MVTEC, BTAD,Kolektor;
video:Shanghai Tec - 介绍:考虑到可重复性和模块化,这个开源库提供了来自文献的算法和一组工具,通过即插即用的方法设计自定义异常检测算法。Anomalib包含最先进的异常检测算法,可以在基准测试中实现最高性能,并且可以现成使用。此外,该库还提供了设计定制算法的组件,可以针对特定需求进行定制。其他工具,包括实验跟踪器、可视化器和超参数优化器,使异常检测模型的设计和实现变得简单。该库还支持OpenVINO模型优化和量化,用于实时部署。总的来说,anomalib是一个广泛的库,用于设计、实现和部署从数据到边缘的无监督异常检测模型。