【数据集—benchmark】异常检测benchmark/异常检测综述/异常检测baseline

介绍

以下几篇论文,有几个功能:

  1. 作为异常检测benchmark
  2. 作为异常检测综述
  3. 作为异常检测baseline实验

异常检测领域benchmark

IM-IAD

  • 论文:https://arxiv.org/pdf/2301.13359
  • 期刊:TCYB
  • 时间:2024
  • 项目:https://github.com/M-3LAB/open-iad
  • 单位:南方科技大学, 腾讯优图, 中科院
  • 介绍:统一的工业AD基准首次用于评估这些算法执行的效果,其中包括不同级别的监督(无监督与完全监督)、学习范式(few-shot、连续和噪声标签)和效率(内存使用和推理速度)。然后,我们构建了一个全面的图像异常检测基准,其中包括7个具有统一设置的主要数据集上的 19 种算法。AD上的大量实验(总共 17017)提供了对AD算法重新设计或选择的深入见解。
  • 包含数据集:
    MVTec AD,MVTec LOCO-AD ,BTAD,MPDD,MTD ,VisA ,DAGM
    在这里插入图片描述
  • 包含方法:
    在这里插入图片描述
  • 评价指标
    在这里插入图片描述
  • 常见异常检测方案:
    在这里插入图片描述

ADer

  • 论文:https://arxiv.org/pdf/2406.03262v1

  • 期刊:arxiv

  • 时间:2024

  • 项目:https://github.com/zhangzjn/ader

  • 单位:腾讯优图,浙大,华科大

  • 介绍:该基准包括来自工业领域和医学领域的多个数据集,实现了 15 种最先进的方法和9个综合指标。此外,我们开源了gpu辅助的adeval包来解决大规模数据上耗时的mau-pro等指标的缓慢评估问题,显著减少了1000倍以上的评估时间

  • 包含数据集:Mvtec AD , Mvtec AD 3D, Mvtec loco-AD VisA,BTAD, MPDD MAD_real ,MAD_sim,real-iad。uni-medical,coco-ad

  • 常见异常检测方案:
    在这里插入图片描述

  • 测试模型对比结果
    在这里插入图片描述

MMAD

  • 论文:https://arxiv.org/pdf/2410.09453
  • 期刊:arxiv
  • 时间:2024
  • 项目:https://github.com/jam-cc/MMAD
  • 单位:南方科技大学, 腾讯优图, 阿尔伯塔大学, 上交
  • 介绍:MMAD是首个多模态大语言模型工业异常检测基准,通过生成语义标注为所有多模态大模型提供了公平的能力评估。从4个公共数据集中的38类工业产品中收集了8,366个样本,共生成了7个关键子任务中的39,672个选择题
  • 包含数据集:MVTec AD,MVTec LOCO AD,GoodsAD,ViSA
    在这里插入图片描述
  • 测试模型对比结果
    在这里插入图片描述
    在这里插入图片描述

Anomalib

  • 论文:https://arxiv.org/pdf/2202.08341
  • 期刊:ICIP
  • 时间:2022
  • 项目:https://github.com/openvinotoolkit/anomalib
  • 单位:腾讯优图,浙大,华科大
  • 包含数据:
    image:CIFAR,MVTEC, BTAD,Kolektor;
    video:Shanghai Tec
  • 介绍:考虑到可重复性和模块化,这个开源库提供了来自文献的算法和一组工具,通过即插即用的方法设计自定义异常检测算法。Anomalib包含最先进的异常检测算法,可以在基准测试中实现最高性能,并且可以现成使用。此外,该库还提供了设计定制算法的组件,可以针对特定需求进行定制。其他工具,包括实验跟踪器、可视化器和超参数优化器,使异常检测模型的设计和实现变得简单。该库还支持OpenVINO模型优化和量化,用于实时部署。总的来说,anomalib是一个广泛的库,用于设计、实现和部署从数据到边缘的无监督异常检测模型。
    在这里插入图片描述
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值