第一、二章--绪论、线性系统状态空间描述

这篇博客深入探讨了动态系统和动力学系统,特别是连续和离散时间线性时变系统。内容涵盖状态空间模型的构建,包括状态方程和输出方程,以及如何通过矩阵表示来描述这些系统。文中还讨论了系统矩阵(A、B、C、D)、特征多项式、约当规范形及其在系统分析和控制中的应用,例如串联、并联和反馈配置。此外,提到了线性系统的稳定性与特征根的关系,以及泰勒级数在非线性系统局部线性化中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

动态系统或动力学系统:运动状态按照确定规律或确定统计规律随时间演化的一类系统,可以分为连续变量动态系统和离散事件动态系统。

连续变量动态系统服从于物理学定律(电力学、力学、热学的定律等)或广义物理学定律(经济学定律、人口学定律、生态学定律、社会学定律),其数学模型可以表示为传统意义下的微分方程或差分方程。

描述连续时间系统的数学模型一般为微分方程

描述离散时间系统的数学模型一般是差分方程

线性系统可以分为线性时不变(定常)系统和线性时变系统,在线性时变系统中,只要参数随时间的变化远慢于系统状态随时间的变化,那么就可以近似为一个线性时不变系统。

外部描述:只是对系统的一种不完全描述,不能反应黑箱内部结构的不能控或不能观测的部分

内部描述:是系统的一种完全的描述,能够完全表征系统结构的一切部分,能够完全反应系统的所有动力学特征

内部描述是基于系统的内部结构分析的一类数学模型,由两个方程来表征:

状态方程:反应系统状态变量组和输入变量组之间的动态关系,其数学表达式对于连续时间系统为一阶微分方程,对于离散时间系统为一阶差分方程

因为输入引起状态变化是一个动态过程

输出方程:反应系统状态变量组与输入变量组和输出变量组之间的转换关系,数学表达式为代数方程组

状态与输入导致输出变化是一个转换过程

 

x_1=i_l;x_2=u_c

x'_1=i'_c;x'_2=u'_c

\begin{bmatrix} -l &R_2C \\ L& R_1C \end{bmatrix}\bigl(\begin{smallmatrix} x'_1\\ x'_2 \end{smallmatrix}\bigr)=\begin{bmatrix} 0 &-1 \\ -R_1& 0 \end{bmatrix}\bigl(\begin{smallmatrix} x_1\\ x_2 \end{smallmatrix}\bigr)+\bigl(\begin{smallmatrix} 0\\ 1 \end{smallmatrix}\bigr)e(t))

用矩阵的逆:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一夕ξ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值