1-1
状态空间的基本概念
问题提出
– 经典控制理论中,线性定常系统用
常微分方程或传递函
数
描述,这是一种输入输出描述。
–
实际上系统除了输出量这个变量之外,还包含有其他相
互独立的变量,而
微分方程或传递函数
对这些内部的中
间变量是不便描述的。
–
不能完全揭示系统的全部运动状态,这是用
常微分方程
或传递函数
描述一个系统的不足之处
。
控制系统的状态空间描述
– 1960年左右,美籍匈牙利人卡尔曼(Kalman
)将数学
中的状态空间法引入控制理论,控制系统的数学模型出
现了另外一种描述方法
——
状态空间表达式。
– 状态空间表达式是
一组
由状态变量构成的
一阶微分方程
,
能反映系统的
全部独立变量
的变化,包括外部变量和内
部变量,从而能同时确定系统的全部内部运动状态。
[例1.1]
最简单的
R-L-C
网络如下
系统数学描述
外部描述
是一种
输入
-
输出
描述,它把系统看作一个
“
黑匣子
”
,输出为输入的直接响应,不考虑系统的
内部结构和内部信息。外部描述直接反映了输出和输
入变量之间的动态因果关系。
内部描述
是基于系统
内部结构
分析的一类数学模型,通常
由
两个数学方程
组成。一是
状态方程
,反映系统内部变量
和输入变量间因果关系,具有微分方程或差分方程的形式;
二是
输出方程
,表征系统内部变量及输入变量和输出变量
间转换关系,具有代数方程的形式。
状态空间描述的基本概念
–
状态变量是能够
完全描述
系统运动状态的
最小个数
的
一组变量称为状态变量,一般用x1(t),x2(t),...,xn(t),表示,且它们之间相互独立(
即变量的数目最小
)
。
–
是指当给定这个最小变量组在初始时刻 的值和在时
刻
系统的输入函数,那么系统在任何时刻
的运行状态都可以完全确定。
从
数学角度
看,是指这组状态变量是系统所有内部变量
中
线性无关的一个极大变量组
。
从
物理角度
看,是指减少其中任意一个变量就不能确定
系统运动行为的信息量,从而不能完全表征系统的运动
状态,而增加一个变量对完全表征系统的运动状态又是
多余的。
[例
1.1]
最简单的
R-L-C
网络如下:
完全描述:
要唯一的确定任意
t
时刻电路的运动状态,除
了输入电压 之外,还需知道电流和电容两端
的电压,电流和电压
是系统的一个完全描述。
最小描述:
若仅选择电流i(t)描述系统,就不能得知u(t)
的运动
状态;反之亦然,故两种缺一不可。若选择电流i(t)、电容两端
的电荷量q(t)=Cu(t)
也可作为系统的状态变量,但q(t)
和u(t)
线性相关,增加u(t)
变量是多余的。
可选择电流i(t)、电容两端的电压u(t)
或电荷q(t)
为状态变量,
但系统状态空间均是
2
维
的。
注意
–
状态变量的个数等于系统独立储能元件的个数。
–
状态变量的选取不是唯一的。
–
状态变量必须是独立的。
–
t=t
0
时刻的值就是状态变量的初始条件。