现代控制理论—①线性系统的状态空间描述

1-1 状态空间的基本概念
问题提出
经典控制理论中,线性定常系统用 常微分方程或传递函 描述,这是一种输入输出描述。
实际上系统除了输出量这个变量之外,还包含有其他相 互独立的变量,而 微分方程或传递函数 对这些内部的中 间变量是不便描述的。
不能完全揭示系统的全部运动状态,这是用 常微分方程 或传递函数 描述一个系统的不足之处
控制系统的状态空间描述
1960年左右,美籍匈牙利人卡尔曼(Kalman )将数学 中的状态空间法引入控制理论,控制系统的数学模型出 现了另外一种描述方法 —— 状态空间表达式。
状态空间表达式是 一组 由状态变量构成的 一阶微分方程 能反映系统的 全部独立变量 的变化,包括外部变量和内 部变量,从而能同时确定系统的全部内部运动状态。
[例1.1] 最简单的 R-L-C 网络如下
 

 

 系统数学描述

外部描述 是一种 输入 - 输出 描述,它把系统看作一个 黑匣子 ,输出为输入的直接响应,不考虑系统的 内部结构和内部信息。外部描述直接反映了输出和输 入变量之间的动态因果关系。

 

内部描述 是基于系统 内部结构 分析的一类数学模型,通常 两个数学方程 组成。一是 状态方程 ,反映系统内部变量 和输入变量间因果关系,具有微分方程或差分方程的形式; 二是 输出方程 ,表征系统内部变量及输入变量和输出变量 间转换关系,具有代数方程的形式。

 

状态空间描述的基本概念
状态变量是能够 完全描述 系统运动状态的 最小个数
一组变量称为状态变量,一般用x1(t),x2(t),...,xn(t),表示,且它们之间相互独立( 即变量的数目最小 )
是指当给定这个最小变量组在初始时刻 的值和在时 系统的输入函数,那么系统在任何时刻
的运行状态都可以完全确定。
数学角度 看,是指这组状态变量是系统所有内部变量 线性无关的一个极大变量组
物理角度 看,是指减少其中任意一个变量就不能确定 系统运动行为的信息量,从而不能完全表征系统的运动 状态,而增加一个变量对完全表征系统的运动状态又是 多余的。
[例 1.1] 最简单的 R-L-C 网络如下:

 

完全描述: 要唯一的确定任意 t 时刻电路的运动状态,除 了输入电压 之外,还需知道电流和电容两端 的电压,电流和电压 是系统的一个完全描述。
最小描述: 若仅选择电流i(t)描述系统,就不能得知u(t) 的运动 状态;反之亦然,故两种缺一不可。若选择电流i(t)、电容两端 的电荷量q(t)=Cu(t) 也可作为系统的状态变量,但q(t) 和u(t)
线性相关,增加u(t) 变量是多余的。
可选择电流i(t)、电容两端的电压u(t) 或电荷q(t) 为状态变量, 但系统状态空间均是 2 的。
注意
状态变量的个数等于系统独立储能元件的个数。
状态变量的选取不是唯一的。
状态变量必须是独立的。
t=t 0 时刻的值就是状态变量的初始条件。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值