transformers库——HfArgumentParser

HfArgumentParser是transformers.hf_argparser.py内的一个类,进一步封装了python的argparse模块,主要处理命令行的参数。

代码解读

hf_argparser.py中首先使用typing模块下的NewType类定义了两个新的数据类型,NewType的第一个参数是数据类型的名称,该数据类型具体可以是Any类型(即各种类型)。

DataClass = NewType("DataClass", Any)
DataClassType = NewType("DataClassType", Any)

init函数解读

class HfArgumentParser(ArgumentParser):
    """
    argparse.ArgumentParser的子类,使用数据类(dataclasses)来生成参数。

这个类被设计成可以很好地与python的argparse配合使用。特别是,您可以在初始化之后向解析器添加更多(非数据类支持的)参数,并且您将在解析后获得作为附加名称空间的输出。可选:要创建子参数组,请在数据类中使用' _argument_group_name '属性。
    """

    dataclass_types: Iterable[DataClassType]  # 定义一个DataClassType类型的可迭代对象

    def __init__(self, dataclass_types: Union[DataClassType, Iterable[DataClassType]], **kwargs):
        """
        Args:
            dataclass_types:
                Dataclass type, or list of dataclass types for which we will "fill" instances with the parsed args.
            kwargs (`Dict[str, Any]`, *optional*):
                Passed to `argparse.ArgumentParser()` in the regular way.
        """
        # To make the default appear when using --help
        if "formatter_class" not in kwargs:
            kwargs["formatter_class"] = ArgumentDefaultsHelpFormatter
        super().__init__(**kwargs)
        if dataclasses.is_dataclass(dataclass_types):	# 判断dataclass_types是否是一个数据类
            dataclass_types = [dataclass_types]		# 是,则将数据类变为一个数据类列表
        self.
### 使用Llama Tokenizer在NLP中的实现与应用 对于希望集成或使用与Llama相关的分词器的应用场景,可以采用Hugging Face Transformers来加载预训练的Llama模型及其对应的分词器。此方法不仅简化了分词器的初始化过程,还提供了灵活易用的接口用于文本处理。 #### 加载并配置Llama分词器 通过Python脚本可以直接调用`transformers`下的`AutoTokenizer`类来实例化一个适用于Llama模型的分词器对象: ```python from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("decapoda-research/llama-7b-hf") ``` 这段代码会自动下载并缓存指定版本的Llama模型所配套的分词器[^1]。 #### 应用分词器于实际对话数据 当拥有了一个可用的分词器之后,就可以将其应用于具体的自然语言处理任务中。例如,在构建聊天机器人时,可以通过该分词器将用户的输入转化为适合喂给Llama模型的形式: ```python messages = [ {"role": "user", "content": "Hello doctor, I have bad acne. How do I get rid of it?"} ] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) print(f"Processed Prompt:\n{prompt}") ``` 上述例子展示了如何利用已有的消息列表创建一个适配于后续生成任务的提示串。 #### 执行文本生成流程 完成分词工作后,下一步便是借助管道机制执行文本生成操作。这里同样依赖于`transformers`提供的便捷API来进行设置: ```python from transformers import pipeline import torch pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.float16, device_map="auto" ) outputs = pipe( prompt, max_new_tokens=120, do_sample=True, temperature=0.7, top_k=50, top_p=0.95 ) for output in outputs: print(output["generated_text"]) ``` 以上片段说明了怎样定义以及运行一个完整的文本生成功能模块,从而获得由AI助手产生的回复内容。 #### 参数解析工具辅助开发 为了进一步优化项目结构和提升可维护性,还可以引入专门设计用来管理命令行参数及其他配置项的小型框架——Argparse。特别是针对大型语言模型(LLMs),这种做法尤为常见: ```python from transformers import HfArgumentParser parser = HfArgumentParser(( ModelArguments, DataTrainingArguments, TrainingArguments )) model_args, data_args, training_args = parser.parse_args_into_dataclasses() ``` 这样做的好处是可以让开发者更加专注于核心逻辑的设计,而无需过多关心环境变量或者启动选项的具体细节[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值